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ABSTRACT
The present article generalizes the group-theoretical exchange condition
to the theory of association schemes. We prove that a large class of
association schemes satisfying our exchange condition arises from groups
as quotients over subgroups. The result provides an alternate proof of
Tits’ reduction theorem for buildings of spherical type.

Introduction

Let T be a group, and let A be a subgroup of I'. For each element « in I", we
define v2 to be the set of all pairs (3A, ByA) with 8 € T. It is easy to see (and
well-known) that {y2| v € '} is an association scheme (or a ‘scheme’, as we
shall say briefly) with respect to {yA| vy € T'}.

Following [3] we call a scheme schurian if it arises from a pair of groups in
the above-described way. It seems that a general scheme-theoretical condition
which distinguishes schurian schemes within the class of all schemes is out of
reach. It is for this reason that one might ask for specific conditions which force
a scheme to be schurian.

In the present article, we focus on such a condition. In combination with other
(general and natural) conditions, our condition turns out to be sufficient for a
scheme to be schurian. We call our condition ‘exchange condition’, because it
generalizes naturally the well-known group-theoretical exchange condition which
distinguishes the Coxeter groups among the groups generated by involutions.

The generalization of the exchange condition from group theory to scheme
theory is part of a major program in which basic concepts and results from
group theory are generalized to scheme theory; cf., e.g., [4] and [5].
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We wish to keep this note self-contained. Therefore, we shall start our con-
siderations by recalling the definition of a scheme, and in order to do so we now
fix a set X.

Let r be a subset of X x X. We write * in order to denote the set of all pairs
(y,2) such that (z,y) € r. For each element z in X, we write xr for the set of
all elements y in X which satisfy (z,y) € r.

Let us fix a partition G of X x X, and let us assume that § ¢ G, that 1 € G,
and that, for each element g in G, ¢* € G. (By 1 we mean the set of all pairs
(z,z) where z € X.) The set G is called a scheme with respect to X if, for any
three elements d, e, and f in G, there exists a cardinal number a4.s such that,
for any two elements y in X and z in yf, |[yd N ze*| = agey.

For the remainder of these introductory remarks, we shall now assume G to
be a scheme with respect to X. We shall explain what it means for G to satisfy
the above-mentioned exchange condition.

Let F' be a non-empty subset of G. For each non-empty subset E of G, we
write EF in order to denote the set of all elements ¢ in G such that there exist
elements e in F and f in F with 1 < af4. If e stands for an element in G, we
write eF instead of {e}F and Fe instead of F{e}. The set F is called closed if,
for each element f in F, f*F C F. We define (F) to be the intersection of all
closed subsets of G which contain F. We set F® := {1}. For each element n in
N\ {0}, we define F" := F*""1F.

An element g in G \ {1} will be called an involution if {1, g} is closed.

Let L be a set of involutions of G. It is easy to see that (L) is the union of
the sets L™ where n is a non-negative integer; cf., e.g., [6; Theorem 1.4.1(i)]. In
particular, for each element ¢ in (L), there exists a smallest integer n such that
g € L™; we denote this integer by £1(g).

If e and f stand for elements in G, we write ef instead of e{f}.

Let us now assume that (L) = G. For each element e in G, we define G (e) to
be the set of all elements d in G such that there exists an element f in de with
01,(f) =€1(d) + €1 (e). We call G constrained over L if, for any two elements f
in G and e € G1(f), 1 = |ef].

Let us assume that G is constrained over L. We say that G satisfies the
exchange condition with respect to L if, for any three elements h, k in L and ¢
in G1(k), h € G1(g) implies that hg C gk U G, (k). We call G a Coxeter scheme
over L if G satisfies the exchange condition with respect to L.

The main results of this note are statements about Coxeter schemes. They
deal with ‘faithful’ maps of Coxeter schemes. What is a faithful map?
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Let W be a subset of X. A map x from W to X is called faithful if, for any
three elements y, z in W and g in G, z € yg implies that zx € yxg.
Here is our first main result.

THEOREM A: Let X be a set, let G be a scheme with respect to X, and let L
be a set of involutions of G such that G is a Coxeter scheme over L. Let y be
an element in X, g an element in G, and z an element in yg.

Let N be a set of subsets of L. For each element N in N, let N' be a subset
of L such that, for e € g(N')YNG(N'), (N') C (N)e. Let V (respectively V')
denote the union of the sets (N) (respectively (N')) with N € N.

Then, each faithful map from yV to X extends faithfully to yV U 2V,

A word about the specific notation used in Theorem A. Let F' be a subset of
G. We write G1(F') in order to denote the intersection of the sets G1(f) with
f € F. For each element g in G, we write F9 in order to denote the set of all
elements e in G such that ge C Fg. For each element z in X, we define zF to
be the union of the sets zf with f € F.

For each subset F of G, we define T'(F) to be the set of all elements f in F
such that 1 = |f*f|.

THEOREM B: Let X be a set, let G be a scheme with respect to X, and let L
be a set of involutions of G such that G is a Coxeter scheme over L. Let N be
a subset of L such that (N) is finite and T'(N) is empty.

Let V denote the union of the sets (M) with M C N and |M| <2, and let =
be an element in X.

Then, each faithful map from zV to X extends faithfully to (N).

Theorem B yields the following corollary.

COROLLARY: Let G be a scheme, and let L be a set of involutions of G such
that G is a Coxeter scheme over L. Assume that G is finite, that 3 < |L|, and
that T'(L) is empty. Then G is schurian.

For the remainder of this note, the letter X will stand for a set and G for a
scheme with respect to X.

1. Basic facts on schemes

We start with a few facts which we shall use occasionally without any reference.

First of ali, it is clear that, for any three elements d, e, and f in G, the
statements f € de, e € d*f, and d € fe* are pairwise equivalent. From this
observation, one obtains easily that, for each closed subset H of G, 1 € H.
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Morcover, for cach closed subset H of G, {xH| z € X} is a partition of X and
{gH| g € G} is a partition of G.

The following lemma is a special case of a well-known and general observation
due to Richard Dedekind; cf. [2; Theorem VIII].

LEMMA 1.1: Let H be a closed subset of G. Then, for any two subsets E and
F of G with F C H, we have HN EF = (HN E)F.

LEMMA 1.2: Let H be a closed subset of G, and let € and f be elements in G.
(i) f He=Hf, He = H/.
(ii)) Let g be an element in G. Then, ife, f € H9, ef C HY.

Proof: (i) Let us assume that He = H f. Then there exists an element h in H
such that f € he.

It is enough to show that H¢ C H/. In order to show this, we pick an element
g in He, and we shall see that g € H/.

From g € H® we obtain that eg C He. Thus, as f € he, fg C heg C hHe =
He = Hf. Thus, by definition, g € H/.

(ii) Let e and f be elements in HY, let ¢ be an element in ef. Since e € HY,
ge C Hg. Since f € HY, gf C Hg. It follows that gc C gef C Hgf C Hg, and
that means that ¢ € HY. |

For the remainder of this note, the letter L will stand for a set of involutions
of G.

LEMMA 1.3: For cach element f in (L) \ {1}, there exist elements e in (L) and
lin L such that f € el and €1,(f) = €r(e) + 1.

Proof: We set n := £1,(f). Then, by definition, f € L™. On the other hand, as
1 # f,1 < n. Thus, there exist elements e in L™ ! and ! in L such that f € el.
From e € L™! we obtain that £;(e) < n — 1. From n = £;,(f) and f € el we
obtain that n < ¢ (e) + 1. 1

Let d, e, and f be elements in (L) such that f € de. It is obvious that
2(f) < €r(d) + £1(e). In the following lemma, we focus on the the case where

ZL(f) = g[,(d) +fL(€).

LEMMA 1.4: Let d, e, and f be elements in (L) satisfying f € de and ¢1(f) =
25,(d) + £1(e). Let b and ¢ be elements in (L)} satisfying e € bc and €1,(e) =
€1(b) + .(c).
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Then, there exists an element g in db such that f € gec, £1(g) = £1,(d) + €L (D),
and £1,(f) = £r(g) + £1(0)-

Proof: Since f € de and € € b, f € dbe. Thus, there exists an element g in db
such that f € gc.

Since g € db, £1.(g) < €1(d)+£€L(b). Since f € ge, £1(f) < £r(g)+21(c). Thus,
as we are assuming that £ (e) = £1(b) + £1(c) and that £1(f) = £.(d) + ¢1(e),

EL(f) < Lrlg) + lule) < £r(d) + €. (b) + £r(c) = €L(f).

It follows that £1,(g) = £L(d) + £1(b) and £L(f) = €r(g) + €r(c). n

For the remainder of this note, we shall assume that (L) = G. Instead of ¢,
we shall write £.

Let e be an element in G. We define G_;(e) to be the set of all elements f in
G such that there exists an element d in G with f € de and £(f) = £(d) + {(e).
(Recall that G;(e) stands for the set of all elements d in G such that there exists
an element f in de with £(f) = £(d) + £(e).)

LEMMA 1.5: For any two elements e and f in G, we have the following.

(i) If f € G-1(e), G-1(f) € G-1(e).

(i) If @ # G_1(e) N G1(f), e € Gi(f).

(iii) Ife € G1(f), f* € G1(e").

(iv) If f € G_1(e), G1(f*) C Gi(e*).
Proof: (i) Let us assume that f € G_;(e), and let us pick an element g in
G_1(f). We shall show that g € G_(e).

Since g € G_1(f), there exists an element d in G such that ¢ € df and
£(g) = €(d) +£(f). On the other hand, we are assuming that f € G_;(e). Thus,
there exists an element ¢ in G such that f € ce and £(f) = £(c) + £(e). Now, by
Lemma 1.4, there exists an element b in dc such that g € be, £(b) = £(d) + £(c),
and £(g) = £(b) + £(e). From g € be and £(g) = £(b) + £(e) we now obtain that
g€ G_q(e).

(i) is another formal consequence of Lemma 1.4.

(iii) follows from the fact that, for each element g in G, £(g*) = £(g).

(iv) Let us assume that f € G_;(e), and let us pick an element g in G1(f*).
We shall show that g € G1(e*).

Since g € G1(f*), f € Gi(g*); cf. (iii)). Thus, as we are assuming that
feG_i(e), e € Gi(g*); cf. (il). Thus, by (iii), g € G1(e*). 1
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For the last two results of this section, we shall assume that, for any three
elements h, k in L and g in G41(k), h € G1(g) implies that hg C G_1 (k) UG, (k).

LEMMA 1.6: For each element [ in L, we have G_; (1) UG1(l) = G.

Proof: Assume the claim to be false. Then G\ (G-1(I) UG1(l)) is not empty.
Among the elements in G \ (G-1(I) U G;1(l)) we choose g such that ¢(g) is as
small as possible.

Since 1 € G4(l) and g & G1(l), 1 # g. Thus, by Lemma 1.3, there exist
elements h in L and f in G such that ¢ € hf and {(g) = 1 + ¢(f). Since
£(g) = 1+ 4(f), the (minimal) choice of g forces f € G_1(I) UG (I).

Since ¢ € hf and £(g) = 1 + £(f), g € G_1(f). Thus, as g ¢ G_1(l),
f & G_1(l); cf. Lemma 1.5(1). Thus, as f € G_1({)UG1(l), f € G1(I). On the
other hand, as g € hf and ¢(g) = 1 + £(f), h € G1(f). Thus, by hypothesis,
hf CG_1()UG1(l). Thus, as g € hf, g C G-1(1)UG:(l), contradiction. |

LEMMA 1.7: For each subset N of L, we have G1(N){N) = G.

Proof: Let us assume that G1(N)(N) # G. Then G\ G;(N){N) is not empty.
Among the elements in G\ G1(N){/N) we choose g such that ¢(g) is as small as
possible.

Since g ¢ G1(N)(N), g ¢ G1(N). Thus, there exists an element [ in N such
that g & G4 (1). Thus, by Lemma 1.6, g € G_1(!). This means that there exists
an element f in G such that g € fl and ¢(g) = ¢(f) + 1.

Since £(g) = £(f) + 1, the (minimal) choice of ¢ yields f € G;(N)(N). Thus,
as g € flandl € N, g € G1(N)(N), contradiction. |

2. Basic facts on constrained schemes

In this section, we assume G to be constrained over L.
For each non-empty subset F of G, we define £(F') to be the set of all elements
¢(f) with fe€ F.

LEMMA 2.1: For any two elements e and f in G, there exists at most one
element d in G such that f € de and ¢(f) = £(d) + £(e).

Proof: Let us fix an element f in G. We shall denote by E the set of all
elements e in G such that there exist elements d and d’' in G with f € de,
fede, (f)=etd)+L(e), {(d) = ¢(d), and d’' # d. By way of contradiction, we
assume that §) 2 E. We pick an element e in £ which satisfies min {(E) = {(e).
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Since e € E, 1 # e. Thus, by Lemma 1.3, there exist elements ! in L and cin G
such that e € lcand ¢(e) = 1+{(c). Thus, as f € de and ¢(f) = é(d}+{(e), there
exists an element b in dl such that f € be, £(b) = £(d)+ 1, and £(f) = £(b) + ¢(c);
cf. Lemma 1.4.

Similarly, we find an element b’ in d'l such that f € b'c, £(b') = ¢(d') + 1, and
U€f) =)+ o).

Since f(e) = 1+ £(c) and min£(E) = €(e), ¢ ¢ E. Thus, as f € be, f € V¢,
¢(f) = £(b) + £(c), and £(f) = £(b') + €(c), b' = D.

We are assuming that G is constrained over L. Thus, as b € dl and ¢(b) =
¢(d) + 1, we have {b} = dl. Similarly, {'} = d'l. Thus, as ¥ =b,d'l =dl. 1t
follows that d' € {d,b}. Thus, as b' = b and (V') = £(d') + 1, d' = d. This
contradiction finishes the proof of the lemma. |

LEMMA 2.2: For any three elements d, e, and f in G such that f € de and
((f) = 4(d) + £(e), we have agey = 1.

Proof: Let us denote by F the set of the elements f in G such that there exist
elements d and e in G with f € de, ¢(f) = £(d) + {(e), and 1 # a4es. By way of
contradiction, we assume that §) # F. We pick an element f in F which satisfies
min £(F) = £(f).

Since f € F, there exist elements d and e in G such that f € de, £(f) =
€(d) + l(e), and 1 # ages. Since f € de and 1 # ages, we have 2 < ages. In
particular, 1 #d and 1 # e.

Since 1 # e, there exist elements ¢ in G and [ in L such that e € cl, and
f(e) = £(c) +1; cf. Lemma 1.3.

Since f € de, ¢(f) = £(d) + £(e), e € cl, and £(e) = {(c) + 1, there exists an
element b in dc such that f € bl, £(b) = £(d) + ¢(c), and £(f) = £(b) + 1, cf.
Lemma 1.4.

We are assuming that G is constrained over L. Thus, as f € bl and ¢(f) =
(o) +1, {f} =0l

It is easy to see (and well-known) that

Z QdcgQglf = Z QdgfQclgs

9€G geG

cf. [1], [3], or [6; Lemma 1.1.3(i)}.
Since b € dc and £(b) = £(d) + £(c), {b} = dc. Thus, the left hand side of the
above equation is equal to @gcpapif-



364 P.-H. ZIESCHANG Isr. J. Math.

Since e € ¢l and £(e) = ¢(c) + 1, {e} = cl. Thus, the right hand side of the
above equation is equal to agefacie.

The choice of f forces agep = 1 and age = 1. (Recall that 1 # d. Therefore,
l(e) < L(f)—1.) Thus, apy = agey. Thus, as 2 < ages, 2 < aps. It follows that
b € bl. Since {f} = bl, this yields f = b, contrary to ¢(f) = ¢(b) + 1. ]

LEMMA 2.3: Let f be an element in G, and let e be an element in G1(f). Let
z be an element in X, y an element in ze, and z an element in yf. Let x be a
map from {z,y,z} to X.

Then, if X|{s,y) and X|(y,-} are faithful, x is faithful, too.

Proof: Let us denote by g the uniquely determined element in G which satisfies
z € £g. We have to prove that zy € zxg.

Since z € yf and y € ze, z € zef. Thus, as z € zg, g € ef. Thus, as we are
assuming that e € G1(f), {9} =ef.

Assume that x|{,} is faithful. Then, as y € ze, yx € zxe. Assume that
Xl{y,z} is faithful. Then, as z € yf, zx € yxf. From zx € yxf and yx € zxe
we obtain that zy € zxef. Thus, as {g} = ef, zx € zxg. ]

Let y and 2z be elements in X, and let n be the smallest element in N with
z € yL™. We shall denote by S(y,z) the union of the sets yL’ N zL? which
satisfy i +j = n:

LEMMA 2.4: Let y and z be elements in X, let v be an element in S{y, z), and
let w be an element in S(v,z). Let x be a map from {v,w,y, 2} to X.
Then, if X|(y,v,-} and X|{yw,-} are faithful, x is faithful, too.

Proof: Let us denote by d the uniquely determined element in G which satisfies
v € yd, by b the one which satisfies w € vb. Then, we have w € ydb. Thus,
there exists an element ¢ in db such that w € yg.

Since w € yg, wx € yxg. (We are assuming that x|(y ..} is faithful.) Thus,
as g € db, wy € yxdb. Thus, there exists an element z in yxd such that wy € zb.

Let us denote by ¢ the uniquely determined element in G which satisfies
2z € we. Then, as w € vb, z € vbe. Thus, there exists an element e in be such
that z € ve. From e € bc and w € S{v, z) we obtain that £(e) = £(b) + £(c).
Thus, {e} = be.

Since z € we, zx € wxc. (Again, we use the hypothesis that x|(yw,,} i8
faithful.) Thus, as wy € zb, zx € zbe. Thus, as {e} = be, zx € ze.
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From 2z € ve and v € yd we obtain that z € yde. Thus, there exists an
element f in de such that z € yf. From f € de and v € S(y, z) we obtain that
¢(f) = £(d) + €(e). Thus, by Lemma 2.2, ages = 1.

Since z € yf, zx € yxf. Since v € ydN ze*, vx € yxdN zxe*. (This time, we
use that x|{, ...} is assumed to be faithful.) On the other hand, we also have
z € yxdNzxe*. Thus, as agey = 1, vx = x. Thus, as wx € xb, wx € vxb. |

From now on, we assume G to be a Coxeter scheme over L. In particular, we
may apply all results of the first two sections.

3. Basic facts on Coxeter schemes

In this section, we collect general results on Coxeter schemes. Our first result
is a formal generalization of the exchange condition.

LEMMA 3.1: Let h be an element in L, and let ¢, d be elements in G such that
d € hc and ¢(d) = 1+ £(c). Let k be an element in L, and let e, f be elements
in G such that f € ek and ¢(f) = €(e) + 1.

Then, if d € Gi(e) and ¢ € G1(f), we have de = cf or d € G1(f).

Proof: Assume that d € G1(e). Then, there exists an element g in de such that
U(g) = £(d) + £(e). Since d € hc and £(d) = 1 + £(c), there exists an element b
in ce such that g € hb, {(b) = ¢(c) + {(e), and £(g) = 1 + £(b); cf. Lemma 1.4.
From b € ce and £(b) = £(c) + £(e) we obtain that {b} = ce. From g € hbd and
¢(g) =1+ £(b) we obtain that h € G;(b).

Similarly, using {b} = ce, we conclude from ¢ € G;(f) that b € Gy (k). Thus,
as G is assumed to be a Coxeter scheme over L, we now have hb = bk or

Since {d} = he, {b} = ce, and {f} = ek, the first case yields de = cf.

Since g € hb, the second case yields g € Gy(k). Thus, by definition, there
exists an element a in gk such that £(a) = £(g) + 1. Since a € gk and gk =
hbk = hcek = df, a € df. Since £(a) = {(g) + 1 and l(g) +1 =1+ £4(b) +1 =
1+ £(c) + £(e) + 1 = £(d) + £(f), £(a) = £(d) + £(f). Thus, d € G1(f). [ |

LEmMA 3.2: Let ! be an element in L, let e be an element in G(l), and let f
stand for the element in el. Then G_1(e) NG_1(I) C G_1(f).

Proof: Let us denote by E the set of all elements g in G_1(e) N G_1(l) with
g ¢ G_1(f). By way of contradiction, we assume that § # E. We pick an
element g in F such that min ¢(E) = £(g).
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Since g € G_i1(e), there exists an element ¢ in G such that g € ce and
£(g) = £(c) + ¢(e). Since e € Gy(I) and g € G_1(l), e # g. Thus, as g € ce,
1 # ¢. Thus, by Lemma 1.3, there exist elements h in L and b in G such that
¢ € hb and £(c) = 1+ £(b). Thus, by Lemma 1.4, there exists an element ¢’ in
be such that g € hg', (g") = £(b) + £(e), and £(g9) = 1 + ¢(q).

Suppose that ¢ € G_1(e) NG_1(l). Then, as ¢’ ¢ E, ¢ € G_1(f). On the
other hand, as g € hg' and ¢(g) = 1+ ¢(¢'), g € G-1(¢'). Thus, by Lemma
1.5(i), g € G_1(f), contrary to g € E.

This contradiction forces ¢' ¢ G_1(e)NG_1(l). On the other hand, as g’ € be
and ¢(g') = £(b) + {(e), ¢’ € G_1(e). Thus, ¢’ ¢ G_1(l). Thus, by Lemma 1.6,
g’ € G1(I). Thus, by our latest hypothesis, hg’ C ¢'l UG (l). Thus, as g € hg',
g € ¢'lUG1(l). Thus, as g € G_1(l), g € ¢'l C bel. Thus, there exists an
element f in el such that g € bf. It follows that

Ug) D)+ L(f) < Bb)+L(e)+1=L(g") +1={(g).

This forces £(g) = £(b) + €(f). Thus, as g € bf, g € G_1(f), contrary to g € E.
|

For the remainder of this section, the letter N stands for a subset of L.

LEMMA 3.3: For each element g in (N), ¢(g) = ¢n(9).

Proof: Assume the claim to be false. Among the elements in {N) which do
not satisfy the equation in question we choose g in such a way that £x(g) is as
small as possible.

Since £(g) # €n{g), 1 # g. Thus, by Lemma 1.3, there exist elements h in N
and f in (N) such that g € hf and ¢n(g) = 1+ {n(f).

Since £(g) # €n(g), g ¢ N. Thus,as g € hf and h € N, 1 # f. Thus, by
Lemma 1.3, there exist elements e in (N) and k£ in N such that f € ek and
¢n(f) = €n(e) + 1. Now, by Lemma 1.4, there exists an element d in he such
that g € dk, ¢n(d) =1+ €n(e), and £y (g) = In(d) + 1.

Since ¢n(g) = fn(d) + 1, the (minimal) choice of g yields £(d) = ¢n(d).
Similarly, as ¢n(g) = 1+ {n(f) and In(f) = €n(e) + 1, €(e) = €n(e). Thus, as
d € he and € (d) =1+ €n(e), h € Gy(e).

Similarly, one obtains that e € G1(k). Thus, as G is assumed to be a Coxeter
scheme over L, we obtain that he = ek or that he C Gy (k).

Since g € hek, the first of these two cases yields g € ekk = {e} U ek, contrary
to €n(g) = €x(e) + 2. Since d € he, the second case yields d € G;(k). Thus,
as g € dk, £(g) = ¢(d) + 1. (Here we use the hypothesis that G is constrained
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over L.) Thus, as ¢(d) = ¢n(d) and €n(g) = ¢n(d) + 1, £(g) = €n(g). This
contradiction finishes the proof of the lemma. |

If F stands for a subset of G, we shall write G_;(F') in order to denote the
intersection of the sets G_1(f) with f € F'.

LEMMA 3.4: We have G_;((N)) = G_1(N).

Proof: Let us assume that G_1({(N)) # G_1(N). Then, as G_,({(N)) C
G_1(N), G_1(N) € G_;({N)). Thus, there exists an element g in G_;(N)
such that g ¢ G_1((N)).

Since g ¢ G_1({N)), there exists an element f in (N) such that g ¢ G_;(f).
Among the elements f in (N) satisfying g ¢ G_1(f) we pick f such that £(f)
is as small as possible.

Since g € G_1(f), 1 # f. Thus, Lemma 1.2 gives us elements e in (N) and k
in N such that f € ek and £(f) = £(e) + 1. Now, the minimal choice of f forces
g€ G_i(e). Thus,as g € G_1(N) C G_1(l), g € G_1(f); cf. Lemma 3.2. This
contradiction finishes our proof. |

LEMMA 3.5: We have G1({N)) = G1(N).

Proof: Let us assume that G1((N)) # G1(N). Then, as G1({N)) € G1(N),
G1(N) € G1({N)). Among the elements in G1(N) \ G1({(N)) we choose d such
that ¢(d) is as small as possible.

Since 1 € G1((N)) and d ¢ G;1({N}), 1 # d. Thus, by Lemma 1.3, there exist
elements h in L and ¢ in G such d € hc and 4(d) = 1 + #(c).

Since d ¢ G1({IN)}), there exists an element f in (N) such that d ¢ G1(f).
Among the elements f in (N) satisfying d ¢ G1(f) we choose f in such a way
that €(f) is minimal. Since d ¢ Gi1(f), 1 # f. Thus, by Lemma 1.3 and
Lemma 3.3, there exist elements e in (N) and k¥ in N such that f € ek and
0f)=1t(e) +1.

Since d € hcand ¢(d) = 1+¢(c), d € G_1(c). Thus, asd € G1(N), c € G1(N);
cf. Lemma 1.5(ii). Thus, as ¢(d) = 1 + ¢(c), the (minimal) choice of d yields
c € G1((N)).

Since ¢(f) = {(e) + 1 and e € (N), the (minimal) choice of f yields d € Gi(e).
Since ¢ € G1({N)) and f € (N), ¢ € G1(f). Thus, by Lemma 3.1, de = ¢f or
d € Gi(f). Thus, by the choice of f, de = c¢f. Thus, as e, f € (N), d € ¢(N).
Thus, there exists an element g in (N) such that d € cg.

Since ¢ € G1({N)) and g € (N), c € G1(g). Thus, asd € cg, £(d) = £(c)+{(g).
Since £(d) = 1+4£(c), this means that £(g) = 1. Thus, by Lemma 3.3, 9 € N. On
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the other hand, as d € cg and ¢(d) = £(c) +£(g), d € G-1(g). Thus, d ¢ G1(N),
contrary to our choice of d. |

LEMMA 3.6: We have (L \ N) C G1({N)).

Proof: Let I be an element in L\ N. Then as G is assumed to be a Coxeter
scheme over L, ! € G1(N). Thus, by Lemma 3.5,/ € G;((N)). Thus, by Lemma
1.5(iii), (N) C Gy (0).

Since ! has been chosen arbitrarily in L \ N, we have shown that (N) C
G1(L\ N). Thus, by Lemma 3.5, (N) C G;1((L\ N)). Thus, by Lemma 1.5(iii),
(L\N)CGi({N)). &

LEMMA 3.7: For each subset M of L, ((M) NG (N)){(M NN) = (M).

Proof: From Lemma 3.6 we know that (M) C G1(N \ M). Thus,
(MYNGy(MNN)={(M)NG:i(N).

On the other hand, Lemma 1.7 says that (M) NG (M NN){(M NN) = (M),
and according to Lemma 1.1, the left hand side of this equation is equal to
(MYNG{(MNN))(MnN). ]

LEMMA 3.8: Let e and f be elements in G, and let | be an element in L such
that l € Gi(e) and |l € G1(f). Then, ifle CIf(N), e € f(N).

Proof: Let us assume, by way of contradiction, that le CIf(N) and e ¢ f(N).
Since le C If{N), we have e € f(N) or e € If(N). Thus, as e ¢ f(N),
e € Lf(N).

By Lemma 1.7, there exists an element d in G;(N) such that f € d(N). By
Lemma 3.5, f* € G_1(d*). Thus, as l € G1(f), l € G1(d); cf. Lemma 1.5(iv).
Thus, as G is assumed to be a Coxeter scheme over L, we have ld C dN or
ld C G1(N). Since e € If(N), f(N) = d(N), and e ¢ f(N), we cannot have
Id C dN. Thus, ld C G1(N).

Similarly, we obtain an element ¢ in G;(N) such that e € ¢(N), | € G;(c),
and lc C G{(N). Using Lemma 3.5 once again we now obtain that lc = Ild.
(Note that le(N) = Id(N).) Thus, by Lemma 2.1, ¢ = d. Thus, as e € ¢(N) and
f € d(N), e € f(N), contradiction. |
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LEMMA 3.9: Let | be an element in L, and let e be an element in G1(N).
Assume there exists an element g in e(N) such that | € G1(g) \ (N)9". Then
le C G1(N).

Proof: From g € e(N) we obtain that (N)g* = (N)e*. Thus, by Lemma 1.2(i),
(N)" = (N)¢". Thus, as we are assuming that [ ¢ (N)9", [ ¢ (N)¢". That
means that e*l € (N)e*, so that we have le Z e(N).

On the other hand, we are assuming that | € G1(g). Thus, by Lemma 1.5(ii),
(iii), ! € Gi(e). Thus, as G is assumed to be a Coxeter scheme over L, we have

le - GI(N) 1
LEMMA 3.10: For any two elements y and z in X, |[yG1(N)Nz(N)| = 1.

Proof: From Lemma 1.7 we know that yG;1(N) N z(N) is not empty. In order
to show that yG1(N) N z(N) has exactly one element, we now pick elements v
and w in yG1(N) N z(N), and we shall see that v = w.

Since v € yG1(N), there exists an element e in G1(N) such that v € ye.
Since v, w € 2{N), w € v(N). Thus, there exists an element ¢ in (N) such that
w € ve. Together, this yields w € yec. Thus, there exists an element f in ec
such that w € yf. Since e € G1(N), ¢ € (N), and f € ec, {(f) = £(e) + £(c);
cf. Lemma 3.5.

From w € yG1(N) we similarly obtain that £(e) = £(f)+£(c*). Thus, 0 = £(c).
It follows that 1 = ¢. Thus, as w € ve, v = w. ]

If g stands for an element in G, we shall write (g) instead of ({g}).

LEMMA 3.11: Letl be an element in L, let x, y, z be elements in X such that
z(l) = y(I) = 2(l) and y # 2. Then, for each subset M of L, y(M) N z(N) C

)
z((M) U (N)).

Proof: Let w be an element in y(M)Nz(N). Since w € z{N), z € w(N). Thus,
asw € y(M), z € y(M)(N). Thus, as z € yl, | € (M)(N) C (M UN). It follows
that I € M U N; cf. Lemma, 3.3.

Since w € y(M) and y € z(l), w € z(I)(M). Similarly, w € z(l)(N). Thus,
asl € MUN, we must have w € £(M) or w € £(N). Thus, w € z((M) U (N)).
1
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4. Faithful maps and Coxeter schemes
In this section, the letter N stands for a subset of L.

LEMMA 4.1: Let y be an element in X, let z be an element in yG,(N), and let
X be a map from {y}Uz(N) to X.
Then, if X|{y,-} and x|.(ny are faithful, x is faithful, too.

Proof: Let z be an element in z(N). We shall be done if we succeed in showing
that x|{y -} is faithful.

Since x € z(N), there exists an element f in (N) such that z € zf. Since we
are agsuming that z € yG1(N), we find an element e in G (V) such that z € ye.
Since e € G1(N), e € G1({N)); cf. Lemma 3.5. Thus, as f € (N), e € G1(J).
Thus, as x|{y,,} and x|{.,z} are faithful, x|y .} is faithful; cf. Lemma 2.3. ]

LEMMA 4.2: Let x be an element in X, let M be a subset of L, and let x be a
map from z({(M) U (N)) to X.
Then, if X|o(a) and X|z(ny are faithful, x is faithful, too.

Proof: Let y be an element in z(M). Then, z € y(M). Thus, by Lemma 3.7,
z € y({M) N G1(N))(N). Thus, there exists an element 2z in y((M) N G (N))
such that z € z(N).

Since z € y(M), X|{y,-} is faithful. Since x € 2(N), x|,(ny is faithful. Thus,
as z € yG1(N), x|{yyus(ny must be faithful; cf. Lemma 4.1. ]

LEMMA 4.3: Let g be an element in G, and let | be an element in L with
1 € Gi(g) \ (N)9". Let = be an element in X, y an element in xl, and z an
element in yg. Finally, let x be a map from {z,y}U z(N) to X.

Then, if X|(z,y} and x|{y1uz(ny are faithful, y is faithful, too.

Proof: By Lemma 1.7, there exists an element e in G; (V) such that g € e(N).
Thus, as we are assuming that [ € G1(g) \ (N}, le C G1(N); cf. Lemma 3.9.

Since z € yg and g € e(N), z € ye(N). Thus, there exists an element w in ye
such that z € w(N). Since w € ye and y € zl, w € zle. Thus, as le C G;(N),
w € $G1(N).

By hypothesis, x|(s,y3 and x|{y,»} are faithful. Moreover, as I € G(g),
l € Gi(e); cf. Lemma 1.5(iv). Thus, as y € 2l and w € ye, X|(4,w} is faithful,
too; cf. Lemma 2.3. On the other hand, as z € w(N), x|w(ny is faithful. Thus,
asw € zG1(N) and z € w(N), x|{z}u-(ny is faithful, too; cf. Lemma 4.1. |
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LEMMA 4.4: Let M be a subset of L, and let g be an element in G,(M) such
that (M) C (N)9. Let y be an element in X, let z be an element in yg(M), and
let 2’ be an element in z(M).

Then, for each faithful map x from y(N) U {2} to X, there exists at most
one faithful map x' from y(N) U {2’} to X, such that x'l;(ny = xly(n) and
2'x' € zx(M).

Proof: We are assuming that z € yg(M). Thus, 2’ € yg(M). On the other
hand, we are assuming that (M) C (N)9, and that means that g(M) C (N)g.
Thus, 2’ € y(N)g, so that we find an element y' in y(N) with z' € ¢'g.

Let us now fix a faithful map X’ from y(N) U {z'} to X which satisfies
X'ly(vy = Xly(ny and 2'x" € 2x(M).

Since y' € y(N), x' is defined on y'. Moreover, we have z’ € y'g. Thus, as '
is assumed to be faithful, we have z'y’ € y'x'g. On the other hand, as we are
assuming that x'|y(ny = X[y(ny, we have y'x’ = y'x. Thus, 2’x’ € y'xg. Thus,
as g € Gh(M), 2'x' € yxG1(M).

Thus, as z'x' € zx(M), the claim follows from Lemma 3.10. |

5. Proof of Theorem A
It is the goal of this section to prove Theorem A. The main idea is the use of
Corollary 5.3 in the proof of Lemma 5.5.

In this section, the letter A stands for a non-empty set of subsets of L.

LEMMA 5.1: We have ((\yen N) = Nyen(N).

Proof: Let us denote by D the intersection of the elements in A" and by H the
intersection of the sets (N) where N € . We have to show that (D) = H.

By way of contradiction, we assume that (D) # H. Then, as (D) C H,
H ¢ (D). We pick an element g in H\ (D) which satisfies min ¢(H \ (D)) = {(g).

Since 1 € (D) and g ¢ (D), 1 # g. Thus, by Lemma 1.3, there exist clements
fin G and lin L such that g € fl and ¢(g) = £(f)+1. It follows that g € G_(I).
Thus, as g € H, | € D; cf. Lemma 3.6. Thus,as g€ flandge H, f € H.
Thus, as €(g) = (f) + 1 and min£(H \ (D)) = £(g), f € (D). Thus, as g € fl
and | € D, g € (D), contradiction. 1

LEMMA 5.2: For each element g in G, we have g{(\yen N) = yen 9(N)-
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Proof: Let us denote by E the set of all elements g in G which do not satisfy
the equation in question. By way of contradiction, we assume that () # E. We
pick an element g in E which satisfies min £(E) = £(g).

By Lemma 5.1, 1 ¢ E. Thus, as g € E, 1 # g. Thus, by Lemma 1.3, there
exist elements [ in L and f in G such that g € If and £(g) = 1 + ¢(f).

Let us denote by D the intersection of the elements in A/. By F we shall
denote the intersection of the sets g(N) where N € N. Then, as g € E,
g(D) # F. Thus, as g(D) C F, F ¢ g(D). Thus, we find an element d in F
such that d ¢ g(D).

Let us first assume that d* € G_,(l). Then, there exists an element ¢ in G
such that d € lc and €(d) = 1 + £(c). Thus, | € G1(¢). Moreover, since g € [ f
and ¢(g) = 1+4(f), 1 € G1(f). On the other hand, for each element N in N, we
have d € g(N). Thus, for each element N in A, we have ¢ € f(N); cf. Lemma
3.8. Thus, as ¢(g) = 1 + £(f) and miné(E) = £(g), c € f(D). It follows that
d € lc Clf(D) = ¢(D), contrary to the choice of d.

Let us now assume that d* ¢ G_;(l). Then, by Lemma 1.6, d* € G;(l). Thus,
by Lemma 1.5(iii), I € G1{d). Thus, there exists an element e in G such that
{e} = ld. Since d € F, we have that, for each element N in N, d € g(N).
Thus, for each element N in N, f € lg C ld(N) = e(N), and this is equivalent
to e € f(N). Thus, as £(g) = 1+ ¢(f) and min¢(E) = €(g), e € f(D). Thus,
d € le C1f(D) = ¢g(D), contrary to the choice of d. |

COROLLARY 5.3: For each element g in G, we have {(\ycpr V) = yen(N)?.

Proof: Let us denote by D the intersection of the elements in A'. Then, for
each element N in NV, (D)9 C (N)9.

Conversely, let e be an element in G such that, for each element N in N,
e € (N)9. Then, for each element N in N, ge C (N)g. Thus, by Lemma 5.2,
ge C (D)g, and this means that e € (D)J. |

For the remainder of this section, we denote by V' the union of the sets (V)
with N € N.-We also fix two elements y and z in X.

LEMMA 5.4: Let z be an element in S(y,z). Then, each faithful map from
{y} U 2V to X extends faithfully to {z,y} U zV.

Proof: Let d (respectively e) stand for the uniquely determined element in G
which satisfies € yd (respectively z € xe). Then, we have z € yde. Thus,
there exists an element f in de such that z € yf.
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Let x be a faithful map from {y}U 2V to X. Then, as z € yf, z2x € yxf.
Thus, as f € de, zx € yxde. Therefore, there exists an element v in yxd such
that zx € ve. We set zx := v. Then, x|{y,z,.} is faithful.

Now we pick an element N in . Then, by Lemma 1.7, z € zG;(N)(N).
Thus, there exists an element w in zG;(N) such that z € w(N). Thus, by
Lemma 3.5, w € S(z,2). On the other hand, as w € z(N) C 2V, x|{yw,z} is
faithful. Thus, as = € S(y,2) and x|{y.c..} is faithful, x|(z,.} is faithful; cf.
Lemma 2.4. Thus, as w € 2G1(N) and z € w(N), x|{zjuz(ny is faithful; cf.
Lemma 4.1.

Now the claim follows from the fact that N has been chosen arbitrarily in V.
1

LEMMA 5.5: Let x be an element in X such that y € S(x,z). Then, ify € zL,
each faithful map from {y} U 2V to X extends faithfully to {x,y}U zV.

Proof: Let g stand for the uniquely determined element in G which satisfies
z € yg, and let [ be the uniquely determined element in L which satisfies y € zl.
Then, as y € S(x,2), l € Gy(g)-

Let x be a faithful map from {y}U 2V to X, and let us denote by M the set
of all elements N of A which satisfy [ € (N)9".

Assume first that § = M. In this case, we pick an arbitrary element in yx!,
and we denote this element by xy. By Lemma 4.3, the extension of x defined
in this way, must be faithful.

Let us now assume that § # M, and let us denote by C the intersection of
the elements in M. Then, by Corollary 5.3, | € (C)9", and that means that
lg C ¢(C).

On the other hand, we have 2 € yg and y € zl, whence z € zlg. Thus,
as lg C ¢g(C), z € z¢g(C). Thus, there exists an element w in xg such that
2z € w{C). From z € yl, w € zg, and | € G;(g) we obtain that z € S(y, w).

Let us denote by U the union of the sets (M) with M € M. Then, as
w € z{C), wU = zU. Thus, as ¢ € S(y,w), x|{yju.v extends faithfully to
{z,y}UzU; cf. Lemma 5.4. Thus, by Lemma 4.3, x is faithful also on {z,y}uzV.
| |

LEMMA 5.6: Let z be an element in X. Then, each faithful map from yV U {z}
to X extends faithfully to yV U {z, z}.

Proof: By induction, we may assume that £ € zL. Then the claim follows
from Lemma 5.4 and Lemma 5.5. |
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Let us denote by ¢ the uniquely determined element in & which satisfies
zZ €yg.

For each element N in A, let N’ be a subset of L such that, for e €
g(N'y N G1(N"), (N)y C (N)¢. We denote by V'’ the union of the sets (N')
with N e V.

LeMMmA 5.7: Each faithful map from yV U {z} to X extends faithfully to
yV uzV'.

Proof: Let x be a faithful map from yV U {z} to X. Then, by Lemma 5.6, x
extends to yV U 2V’ in such a way that, for each element z in 2V, X|yvu{s,z}
is faithful.

Let us now fix an element N in N, and let us pick two elements v and w
in z(N'). By Lemma 5.6, x|,(nyu{v} extends faithfully to y(N) U {v,w}. By
Lemma 4.4, this extension coincides with X[y(nyufv,w)- Thus, X|{v,»} is faithful.

Since v and w have been chosen arbitrarily in z(N'), we have shown that
X|z(nvy is faithful. Thus, the claim follows from Lemma 4.2. ]

THEOREM A: Each faithful map from yV to X extends faithfully to yV U zV’.

Proof: Let y be a faithful map from yV to X. Then, by Lemma 5.6, x extends
faithfully to yV U {z}. Thus, the claim follows from Lemma 5.7. |

LEMMA 5.8: Let 2' be an element in yg N zV'. Then, for each faithful map x
from yV U 2V’ to X, there exists a faithful map x' from yV U z'V’ to X which
coincides with y on yV and on zV' N 2'V".

Proof: We are assuming that 2’ € yg. Thus, there exists a faithful map x’
from yV U 2'V’' to X which coincides with x on yV and on 2'; ¢f. Lemma 5.7.
We shall show that x and ' coincide on 2V’ N 2'V’. In order to do so, we pick
an element z in 2V’ N 2’'V’. Since z € 2'V’, there exists an element N in A
such that z € 2'(N').

Since (N) C V, the (faithful) maps x|y(nvyuiz} and X'|ly(nyuis} coincide on
y(N). Moreover, as z € 2/(N'), xx’' € 2'x'(N') = 2'x(N'). Finally, as z €
2'(N"Y, zx € 2'x{N’). Thus, by Lemma 4.4, zx = zY’. ]
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6. Proof of Theorem B

It is the goal of this section to prove Theorem B. The proofs of the first two
results are similar to the corresponding ones for Coxeter groups. We add them
here just for the sake of completeness. Our general approach to Theorem B is
inspired by the arguments of Tits’ well-known reduction theorems for buildings
of spherical type.

In this section, the letter N stands for a subset of L such that () is finite.

LEMMA 6.1: Let g be an element in (N) satisfying £(g) = max¢((N)). Then
9 € G_1((N)).

Proof: From g € (N) and £(g) = max £({N)) we obtain that, for each element
lin N, g € G1(I). Thus, by Lemma 1.6, g € G_;(N). Thus, the claim follows
from Lemma 3.4. |

LEMMA 6.2: The set (N) contains a uniquely determined element g satisfying
t(g) = max £((N)).

Proof: Let e and f be elements in (N) satisfying £(e) = max{((N)) = £(f).
We shall show that e = f.

Since f € (N) and ¢(f) = max£((N)), f € G_1({N}); cf. Lemma 6.1. Thus,
as e € (N), f € G_1(e). Thus, by definition, there exists an element d in G
such that f € de and £(f) = £(d) + £(e).

Similarly, we find an element ¢ in G such that e € c¢f and £(e) = £(c) + £(f).
It follows that £(c) = 0. Thus, 1 = ¢, whence e¢ = f. 1

Lemma 6.2 says that the set (N) contains a uniquely determined element g
satisfying £(g) = max £({N)). We shall denote this element by jy.

Since (jn)* € (N) and £((jn)*) = €(jn), we have (jn)* = jn. In the
following, we shall use this equation without further reference.

Let g be an element in (N). Then, as jy € (N) and £(jn) = max{((N)),
Jn € G_1(g); cf. Lemma 6.1. Thus, by definition, G contains an element f
with jy € fg and £(jn) = €(f) + £(g). Moreover, by Lemma 2.1, G contains at
most one such element. We denote this element by gt). Note that g(¥) € (V).
Thus, g(M™) is defined. We write gtV instead of (M),

It is clear that, for each element g in (N), £(gl")) = £(g). In particular, for
each element ! in N, we have I’ € N; ¢f. Lemma 3.3.

For each subset M of N, we define MM to be the set of all elements I[V]
withl e M.



376 P.-H. ZIESCHANG Isr. J. Math.

LEMMA 6.3: For each subset M of N, the following holds.
(i) We have (jp)™) € jn(M).
(i) We have (jar)™) € G1(M).

(iii) We have (M) C <M[N]>((jM)(N))_

Proof: (i) By definition, we have jx € (jam)™ja. Thus, as jy € (M),
in € (m)MN{M), so that (jar)™) € jn(M).

(ii) In order to show that (jar)(M) € G1(M) we pick an element [ in M, and
we shall show that (jx)*) € Gi(I). Since | € M, jyr € G_1(1); cf. Lemma
6.1. Thus, by Lemma 1.5(iv), G1(jar) C G1(1). Thus, as (ja)™) € G1(jm),
()™ € Gr ().

(iii) From Lemma 1.2(ii) we know that it is enough to show that, for each
element 1 in M, (§u1) ™1 C (MIN)Y ().

In order to do so we pick an element in [ in M. Then, by (ii), (jar)™¥) € G1(0).
Thus, there exists an element e in (j7)™)1 such that £(e) = £((jpr)™¥)) + 1.

Assume that M[N! C Gy(e). Then, by Lemma 3.5, jyv € Gi(e). Thus,
there exists an element f in jpsw~ie such that £(f) = €(jpum) + €(e). On the
other hand, as f € (), £(f) < £(jn), contradiction.

Thus, as G is assumed to be a Coxeter scheme over L, there exists an element
k in MM such that (jar) ™M1 = k(jar) ™) C (MINY(jpr ). ]

For the remainder of this section, we shall write j instead of jy.

LEMMA 6.4: Let (y,z) be an element in j, and let | be an element in N. Then
each faithful map from y({IIN1) U z(l) to X is uniquely determined by its action
on y(IINly U {z}.

Proof: Let y be a faithful map from y(I!M)Uz(l) to X, and let z be an element
in z(l). By Lemma 6.3(ii), /") € G,(), and, by Lemma 6.3(iii), (I) C (IIN)*".
Thus, the claim follows from Lemma 4.4 (applied to {/} and {I["} instead of
M and N). ]

LEMMA 6.5: Let (y,z) be an element in j, and let M be a subset of N with
0 = T(M). Then each faithful map from y(MN) U 2(M) to X is uniquely
determined by its action on yMN1 U {z}.

Proof: Let x be a faithful map from y(M™) U 2(M) to X. From Lemma 6.4
we obtain that x is uniquely determined on zM.

Let us now prove that x is uniquely determined on zM?. In order to show
this we pick an element w in zM?2. Since w € zM?, there exists an element v
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in zM such that w € vM. Since v € zM, there exists an element h in M such
that v € zh. Since w € vM, there exists an element k in M such that w € vk.
We are assuming that T'(M) is empty. Thus, zj Nvj Ny (M) is not empty. Let
 be an element in zj Nvj Ny (A,

By hypothesis, x is uniquely defined on yh!N!. In particular, x is uniquely
defined on z. Thus, as = € zj, x is uniquely defined on z(kM); cf. Lemma 6.4.
Thus, as v € xj, x is uniquely defined on v(k); cf. Lemma 6.4 once again.

Induction now finishes our proof of the lemma. 1

For the remainder of this section, we fix an element n in {1,...,|N|}. The
letter M will stand for the set of all subsets of N of order less or equal to n.
By V' we denote the union of the sets (M) with M € M.

For each pair (y, z) in j, we define X, to be the set of all faithful maps from
yVuzV to X.

From now on, we assume T'(N) to be empty. As a consequence of Lemma 6.5
we obtain the following.

COROLLARY 6.6: Let (y,z) be an element in j. Then each map in X, is
uniquely determined by its action on yN U {z}.

Let M be an element in M, let (v,w) and (y, z) be elements in j such that
y € v{MM]) and z € w(M).

Two maps x in Xy and ¢ in Xy, will be called M-compatible if, for each
element  in wj N zj N v(MW), there exist maps 7 in X, and ¢ in X,, such
that x and 5 coincide on vV NzV and on wV, n and { coincide on zV and on
wV N zV, and ¢ and ¥ coincide on zV NyV and on zV.

Note that, for any two elements y and z in X, # # yj N zj. (This follows by
induction.) Thus, if (v,w) and (y,2) are elements in j, ¢ an element in X,
and ¢ an element in X,, which is M-compatible with ¢, 29 € w¢(M) and
y € vp(MIN).

We define X to be the union of the sets X, with (y,2) € j.

For the remainder of this section, we assume that 2 < n.

LEMMA 6.7: M-compatibility is an equivalence relation on X.

Proof: By Lemma 5.8, M-compatibility is reflexive. That M-compatibility is
symmetric follows immediately from the definition of M-compatibility. Let us
prove transitivity.

Let (v, u), (v',v), (w',w) be elements in j such that v, w € u(M) and v,
w' € u'(MIM)). Let x, be an element in Xy, let Yy be an element in Xyrop,
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and let x, be an element in X,, which is M-compatible with both, x, and ..
We have to show that x, and x, are M-compatible. By induction, we may
assume that w € vM. Thus, there exists an element [ in M such that w € vl.

In order to show that x, and x, are M-compatible, we pick an element ¢ in
uj Nwj Nw'(MWV]), Then, as we are assuming that T(N) is empty, there exist
elements r in uj Nvj NN and s in v Nwj N LN, recall that w € vl.

Since x, and x, are assumed to be compatible, there exist maps p from
rV UuV to X and o from rV U vV to X such that x, and p coincide on
w'VNrV and on 4V, p and ¢ coincide on 7V and on vV NoV, and ¢ and Y,
coincide on rV Nov'V and on vV.

Similarly, as x, and Y. are assumed to be compatible, there exist maps ¢
from sV UvV to X and n from sV UwV to X such that x, and ¢ coincide on
'V N sV and on vV, ¢ and n coincide on sV and on vV NwV, and 5 and x,,
coincide on sV Nw'V and on wV.

By Lemma 5.8, there exists a faithful map ¢ from ¢tV U uV to X which
coincides with y,, on u'V NtV and on «V. Similarly, we find a faithful map v
from tV U wV to X which coincides with ¢ on ¢tV and on uV NwV. Finally,
referring to Lemma 5.8 a third time, we obtain a faithful map 7 from sV UwV
to X which coincides with ¥ on tV N sV and on wV.

We claim that 7 = 1, and in order to see this we pick an element x in s/V.
Then, as we are assuming that 2 < n,

i =xp =x¢ =xp =0 = 2( = 0.
Since z has been chosen arbitrarily in sN, we have that 7j|sn = n]sy. Thus, as
wh) = wy = wo = wp = woe =w( = wn,

i} = n; cf. Corollary 6.6.

The maps ¢ and 7} coincide on w’ and on wV. The same is true for 5 and .
Thus, % and Y., coincide on w’ and on wV. Thus, they coincide on tV Nw'V
and on wV. ]

Let (y, z) be an element in 7, and let M be an element in M. From Lemma, 6.7
we obtain (in particular) that each M-equivalence class intersects X, in at most
one element. The following lemma shows that, if @ # X, each M-equivalence
class intersects X, in at least one element.

LeEMMA 6.8: Let (y,2) and (y',2') be elements in j, and let M be an element
in M such that y' € y(MM)) and 2’ € z(M). Then, for each element x in Xyz,
there exists an element in X,s,» which is M-compatible with .
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Proof: By Lemma 6.7, we may assume that 2’ € zM. In this case, there exists
an element { in M such that 2’ € zl.

Since z' € zl, we may assume that ¥’ € yll¥]. Since we are assuming that
T(N) is empty, there exists an element x in zj N z'j N y(IIV).

By Lemma 5.8, there exists a faithful map ¢ from zV U 2V to X which
coincides with x on yV NzV and on vV. Similarly, we find a faithful map
from zV U 2'V to X which coincides with ¢ on zV and on 2V N 2'V. Finally,
referring to Lemma 5.8 a third time, we obtain a faithful map x, from y'VUz'V
to X which coincides with ¢ on £V Ny'V and on 2'V.

The maps x and ¢ coincide on yV NzV, ¢ and 9 coincide on 2V, and ¢ and
Xz coincide on zV N y'V. On the other hand, we know from Lemma 3.11 that
yV Ny'V CzV. Thus, x and x, coincide on yV Ny'V.

The maps x and ¢ coincide on 2V, ¢ and ¢ coincide on 2V N2V, and ¢ and
Xz coincide on z'V. Thus, x and y,s coincide on 2V N 2'V.

In order to show that x and x, are M-compatible, we pick an element ¢ in
y (M ynzjN2'j. By Lemma 5.8, there exists a faithful map ¢ from ¢tV U2V
to X such that x and ¢ coincide on yV NtV and on 2V. Similarly, there exists
a faithful map ¥ from tV U 2’V to X such that ¢ and v coincide on tV and on
2V n2'V.

We claim that 4 and x,, coincide on z'N. In order to see this we pick an
element = in z2’N. Then, as 2’ € zM, 2y = ¢ = zx = xx». Thus, as
Y =y'¢ =y'x =y xw, we conclude that ¢ and x,+ coincide on tV Ny'V and
on 2'V. |

We call N-compatibility the smallest equivalence relation on X which contains
M -compatibility for each M in M.

Let (y,2) and (y',2') be elements in j, let ¢ be an element in X,,, and let
¥ be an element in X, ,/. Then, if ¢ and ¥ are N-compatible, 2z’ € z(N) (and

y' € y(N)).

LEMMA 6.9: Let (y, 2) be an element in j. Then, for each element y in X there
exists at most one element in X,, which is N-compatible with x.

Proof: Let us denote by F the set of all elements g in (V) such that zg contains
an element contradicting our claim. By way of contradiction, we assume that
0 # F. We pick an element f in F such that min £(F) = {(f).

Since f € F, 1 # f. Thus, by Lemma 1.3, there exist elements e in (N) and
h in N such that f € eh and ¢(f) = {(e) + 1.
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Since f € F, there exists an element x in zf such that X, contains at least
two (different) elements x, and x, which are N-compatible with x.

From z € zf and f € eh we obtain that = € zeh. Thus, there exists an
element u in ze such that x € uh.

By Lemma 6.8, there exists an element x, in X, which is N-compatible with
Xz Similarly, we find an element x/, in X, which is N-compatible with 7.
Both, x, and xJ, are N-compatible with x. Thus, as min £(F) = ¢(f), x. = X,
Thus, by Lemma 6.7, xz = x4- [ |

THEOREM B: Let z be an element in X. Then each faithful map from zV to
X extends faithfully to z(N).

Proof: Let x be a faithful map from zV to X, and let 2’ be an element in
z'7. Then, by Theorem A, y extends faithfully to a map . from z'V U zV to
X. Thus, by Lemma 6.9, there exists, for each element w in £(N) a uniquely
determined element y,, in X,, which is N-compatible with x..

For each element w in (N}, we set wy := wY,. Then we obtain that, for
any two elements u and v in z(N) satisfying v € uN, vy € uxN. Thus, x is a
faithful map from z(N) to X.

Let ¢t be an element in V. Then, by definition, there exists an element M in
M such that t € z(M). Thus, by induction, X¢|s(ary = X|z(ary. This shows that
x extends Y.
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