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ABSTRACT 

The present article generalizes the group-theoretical exchange condition 

to the theory of association schemes. We prove that a large class of 

association schemes satisfying our exchange condition arises from groups 

as quotients over subgroups. The result provides an alternate proof of 

Tits' reduction theorern for buildings of spherical type. 

Introduction 

Let F be a group, and let A be a subgroup of F. For each element 3' in F, we 

define 7 a to be tile set of all pairs (f~A, j3-~A) with ~3 C F. It is easy to see (and 

well-known) that {?P'I "~ �9 F} is an association scheme (or a 'scheme', as we 

shall say briefly) with respect to {'yA I 9' �9 F}. 

Following [3] we call a scheme schurian if it arises from a pair of groups in 

tim above-described way. It seems that  a general scheme-theoretical condition 

which distinguishes schurian schemes within tile class of all schemes is out of 

reach. It is for this reason that  one might ask for specific conditions which force 

a scheme to be schurian. 

In the present article, we focus on such a condition. In combination with other 

(general and natural) conditions, our condition turns out to be sufficient for a 

scheme to be schurian. We call our condition 'exchange condition', because it 

generalizes naturally the well-known group-theoretical exchange condition which 

distinguishes the Coxeter groups among the groups generated by involutions. 

The generalization of the exchange condition from group theory to scheme 

theory is part of a major program in which basic concepts and results from 

group theory are generalized to scheme theory; cf., e.g., [4] and [5]. 
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We wish to keep this note self-contained. Therefore, we shall start our con- 

siderations by recalling the definition of a scheme, and in order to do so we now 

fix a set X.  

Let r be a subset of X • X.  We write r* in order to denote the set of all pairs 

(y, z) such that  (z, y) E r. For each element x in X,  we write xr for the set of 

all elements y in X which satisfy (x, y) E r. 

Let us fix a parti t ion G of X • X,  and let us assume that  0 it G, that  1 E G, 

and that ,  for each element g in G, g* E G. (By 1 we mean the set of all pairs 

(x, x) where x E X.)  The set G is called a scheme with respect to X if, for any 

three elements d, e, and f in G, there exists a cardinal number ades such that,  

for any two elements y in X and z in y f ,  ]ydM ze*] = adeS. 

For the remainder of these introductory remarks, we shall now assume G to 

be a scheme with respect to X.  We shall explain what it means for G to satisfy 

the above-mentioned exchange condition. 

Let F be a non-empty subset of G. For each non-empty subset E of G, we 

write E F  in order to denote the set of all elements g in G such that  there exist 

elements e in E and f in F with 1 _~ aefg. If e stands for an element in G, we 

write eF instead of {e}F and Fe instead of F{e}. The set F is called closed if, 

for each element f in F,  f*F  C F. We define (F) to be the intersection of all 

closed subsets of G which contain F.  We set F ~ := {1}. For each element n in 

N \ {0}, we define F n : :  Fn-IF .  

An element g in G \ {1} will be called an involution if {1,g} is closed. 

Let L be a set of involutions of G. It is easy to see that  (L) is the union of 

the sets L n where n is a non-negative integer; cf., e.g., [6; Theorem 1.4.1(i)]. In 

particular, for each element g in (L), there exists a smallest integer n such that  

g C Ln; we denote this integer by eL(g). 

If e and f stand for elements in G, we write e f  instead of e{f}.  

Let us now assume that  (L) = G. For each element e in G, we define Gl(e) to 

be the set of all elements d in G such that  there exists an element f in de with 

eL(f) = eL(d) + eL(e). We call G constrained over L if, for any two elements f 

in G and e E Gl(f) ,  1 = [ef[. 

Let us assume that  G is constrained over L. We say that  G satisfies the 

exchange condition with respect to L if, for any three elements h, k in L and g 

in G1 (k), h E G1 (g) implies that  hg C_ gk U G1 (k). We call G a Coxeter scheme 

over L if G satisfies the exchange condition with respect to L. 

The main results of this note are statements about Coxeter schemes. They 

deal with 'faithful' maps of Coxeter schemes. What  is a faithful map? 
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Let W be a subset of X. A map X from W to X is called faithful if, for any 

three elements y, z in W and g in G, z E yg implies that  zx E Yxg. 

Here is our first main result. 

THEOREM A: Let X be a set, let G be a scheme with respect to X,  and let L 

be a set of involutions of G sudl that G is a Coxeter scheme over L. Let y be 

an element in X,  g an element in G, and z an element in yg. 

Let iV" be a set of subsets of L. For each element N in Af , let N ~ be a subset 

of L sudl that, for e E g(N') n GI(N' ) ,  (N') C_ (N) e. Let V (respectively V') 

denote tile union of the sets (N) (respectively (N')) with N E A/'. 

Then, each faithful map from yV to X extends faithfully to yV O zV ~. 

A word about the specific notation used in Theorem A. Let F be a subset of 

G. We write G1 (F) in order to denote the intersection of the sets G1 ( f )  with 

f E F.  For each element g in G, we write F g in order to denote the set of all 

elements e in G such that  ge C_ Fg. For each element x in X,  we define xF to 

be the union of the sets x f  with f C F.  

For each subset F of G, we define T(F) to be the set of all elements f in F 

such that  1 -- i f*f[ .  

THEOREM B: Let X be a set, let G be a scheme with respect to X,  and let L 

be a set of involutions of G such that G is a Coxeter sdmme over L. Let N be 

a subset of L such that (N) is finite and T(N)  is empty. 

Let V denote the union of the sets (M) with M C_ N and IMI <__ 2, and let x 

be an element in X.  

Then, each faithful map from xV to X extends faithfully to x(N).  

Theorem B yields the following corollary. 

COROLLARY: Let G be a sdmme, and let L be a set of involutions of G sudl 

that G is a Coxeter sdleme over L. Assume that G is finite, that 3 < ILl, and 

that T(L) is empty. Then G is sehurian. 

For the remainder of this note, the letter X will stand for a set and G for a 

scheme with respect to X. 

1. Bas ic  facts  on  s c h e m e s  

We start with a few facts which we shall use occasionally without any reference. 

First of all, it is clear that ,  for any three elements d, e, and f in G, the 

statements f E de, e E d ' f ,  and d E f e* are pairwise equivalent. Fi'om this 

observation, one obtains easily that ,  for each closed subset H of G, 1 E H.  
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Moreover, for each closed subset H of G, {xH] x E X}  is a parti t ion of X and 

{gH[ g E G} is a parti t ion of G. 

The following lemma is a special case of a well-known and general observation 

due to Richard Dedekind; cf. [2; Theorem VIII]. 

LEMMA 1.1: Let H be a closed subset of G. Then, for any two subsets E and 

F of G with F C_ H, we have H M EF = (H M E)F. 

LEMMA 1.2: Let H be a closed subset of G, and let e and f be elements in G. 

(i) If He = HI ,  H e = H f. 

(ii) Let g be an element in G. Then, ire, f E Hg, e f  C_ Hg. 

Proof." (i) Let us assume that  He = Hr.  Then there exists an element h in H 

such that  f E he. 

I t  is enough to show that  H ~ C_ H I. In order to show this, we pick an element 

g in H e, and we shall see that  g E H I .  

Prom g E H ~ we obtain that  eg C_ He. Thus, as f E he, fg  C_ heg C_ hHe = 

He = Hf .  Thus, by definition, g E H I .  

(ii) Let e and f be elements in H g, let c be an element in el.  Since e E H g, 

ge C_ Hg. Since f E H .~ g f  C_ Hg. It  follows that  gc C_ gel C_ Hgf  C_ Hg, and 

tha t  means that  c E Hg. | 

For the remainder of this note, the letter L will stand for a set of involutions 

of G. 

LEMMA 1.3: For each element f in (L} \ {1}, there exist elements e in (L) and 

l in L such that f E el and eL(f) = fL(e) + 1. 

Proof." We set n := eL(f). Then, by definition, f E L n. On the other hand, as 

1 ~ f ,  1 <: n. Thus, there exist elements e in L n-1 and 1 in L such that  f E el. 

prom e E L '~-1 we obtain that  eL(e) _< n - 1. l~'om n = eL(f)  and f E el we 

obtain that  n < eL(e) Jr- 1. | 

Let d, e, and f be elements in (L / such that  f E de. It  is obvious that  

eL(f) <_ eL(d) + eL(e). In the following lemma, we focus oll the the case where 

eL(f)  -= eL(d) + eL(e). 

LEMMA 1.4: Let d, e, and f be elements in (L) satisfying f E de and eL(f) = 

eL(d) + eL(e). Let b and c be elements in (L) satisfying e E bc and eL(e) = 

eL (b) + eL (c). 
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Then, there exists an element g in db such that f E gc, e L (g) = e L (d) q- eL (b), 

and eL(S) = eL(g) + eL(c). 

Proof'. Since f E de and e E bc, f E dbc. Thus, there exists an element g in db 

such that f Egc. 

Since g E db, eL(g) < eL(d)+eL(b). Since f Egc,  eL(f) <_ eL(g)+eL(C). Thus, 

as we are assuming that eL(e) = eL(b) + eL(C) and that eL(f) = eL(d) + eL(e), 

eL(f) <_ eL(g) + eL(e) _< eL(d) + eL(b) +eL(C) = eL(f). 

It follows that eL (g) = eL (d) + eL (b) and eL (f)  = eL (g) + eL (C). 

For the remainder of this 

we shall write e. 

Let e be an element in G. 

I 

note, we shall assume that (L} = G. Instead of eL 

We define G_l(e)  to be the set of all elements f in 

G such that there exists an element d in G with f E de and e(f)  = e(d) + e(e). 

(Recall that  G1 (e) stands for the set of all elements d in G such that there exists 

an element f in de with e(f)  = e(d) + e(e).) 

LEMMA 1.5: For any two elements e and f in G, we have the following. 

(i) I [ f  E G-x(e),  G - x ( f )  C_ G- l ( e ) .  

(ii) If  0 ~ G-~ (e) M Gl( f ) ,  e E G~ (f). 

(iii) Ire E Gl( f ) ,  f* E Gl(e*). 

(iv) I f f  E a - x ( e ) ,  G l ( f * )  C a l ( e * ) .  

Proof: (i) Let us assume that f E G_l(e) ,  and let us pick an element g in 

G - l ( f ) .  We shall show that g E G-1 (e). 

Since g E G - l ( f ) ,  there exists an element d in G such that g E df and 

e(g) = e(d) + e ( f ) .  On the other hand, we are assuming that f E G_l(e). Thus, 

there exists an element c in G such that f E ce and e(f)  = e(e) + e(e). Now, by 

Lemma 1.4, there exists an element b in dc such that g E be, e(b) = e(d) + e(c), 

and e(g) = e(b) + e(e). From g E be and e(g) = e(b) + e(e) we now obtain that  

g a - l ( e ) .  
(ii) is another formal consequence of Lemma 1.4. 

(iii) follows from the fact that, for each element g in G, e(g*) = e(g). 

(iv) Let us assume that f E G- l ( e ) ,  and let us pick an element g in Gl ( f*) .  

We shall show that g E Gl(e*). 

Since g E Gl(f*),  f E Gl(g*); cf. (iii). Thus, as we are assuming that 

f E G_l(e) ,  e E Gl(g*); cf. (ii). Thus, by (iii), g E Gl(e*). I 
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For the last two results of this section, we shall assume that, for any three 

elements h, k in L and g in Gl(k), h E Gl(g) implies that hg C_ G_l(k) UGl(k). 

LEMMA 1.6: For each e/ement 1 in L, we have G-l(1) U Gl(l) = G. 

Proof: Assume the claim to be false. Then G \ (G_l(1) U GI(/)) is not empty. 

Among the elements in G \ (G-1 (1) U G1 (1)) we choose g such that g(g) is as 

small as possible. 

Since 1 E Gl(1) and g r GI(/), 1 ~ g. Thus, by Lemma 1.3, there exist 

elements h in L and f in G such that g E h f  and g(9) = l + g ( f ) .  Since 

g(g) = 1 + g(f), the (minimal) choice of g forces f E G-l(l)  U Gl(1). 

Since 9 E h f  and g(g) = 1 + g(f), g E G-a(f) .  Thus, as g r G_l(1), 
f r G-l(/);  cf. Lemma 1.5(i). Thus, as f E G-l( l )UGI( / ) ,  f E GI(/). On the 

other hand, as g E h f  and g(g) = 1 + g(f), h E Gl(f) .  Thus, by hypothesis, 

h f  C_ G-a (1) U Gl(1). Thus, as g E h f ,  g C_ G-1 (l) U G1 (1), contradiction. I 

LEMMA 1.7: For each subset N of L, we have GI(N)(N) = G. 

Proof: Let us assume that a l  (N) iN) r a .  Then G \ a l  (N) iN} is not empty. 

Among the elements in G \ G1 (N) (N) we choose g such that g(g) is as small as 

possible. 

Since g ~ GI(N)iN) ,  g r GI(N). Thus, there exists an element 1 in N such 

that g r G1 (l). Thus, by Lemma 1.6, g E G-1 (l). This means that there exists 

an element f in G such that g E f l  and gig) = g(f) + 1. 
Since g(g) = g(f) + 1, the (minimal) choice of g yields f E G1 (N)iN).  Thus, 

as g E f l  and l E N, g E G1 (N)(N), contradiction. I 

2. Basic facts on const ra ined schemes 

In this section, we assume G to be constrained over L. 

For each non-empty subset F of G, we define g(F) to be the set of all elements 

~(f) with f E F. 

LEMMA 2.1: For any two elements e and f in G, there exists at most one 

element d in G such that f E de and g(f) = f(d) + g(e). 

Proof." Let us fix an element f in G. We shall denote by E the set of all 

elements e in G such that there exist elements d and d ~ in G with f E de, 
f E d'e, g(f) = g(d)+g(e), g(d') = g(d), and d' ~ d. By way of contradiction, we 

assume that 0 r E. We pick an element e in E which satisfies min g(E) = f(e). 
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Since e E E, 1 r e. Thus, by Lemma 1.3, there exist elements l in L and c in G 

such that e E lc and g(e) = 1 +g(c). Thus, as f E de and g(f) = e(d)+g(e), there 

exists an element b in dl such that f E bc, g(b) = g(d) + 1, and g(f) = t?(b) + s 

cf. Lemma 1.4. 

Similarly, we find an element b r in d'l such that  f C b'c, g(b ~) = e(d ~) + 1, and 

g(f) = e(b') + g(e). 

Since e(e) = 1 + g(c) and min e(E) = e(e), c r E. Thus, as f E be, f E b'c, 

g(f) = g(b) + g(c), and g(f) = g(b') + g(c), b' = b. 

We are assuming that  G is constrained over L. Thus, as b E dl and g(b) = 

e(d) + 1, we have {b} = dl. Similarly, {b'} = d'l. Thus, as b' = b, d'l =d l .  It 

follows that  d' E {d,b}. Thus, asb '  = bandg(b ' )  = g ( d ' ) + l , d '  = d. This 

contradiction finishes the proof of the lemma. II 

LEMMA 2.2: For emy three elements d, e, and f in G such that f E de and 

e(f)  = e(d) + e(e), we have ad~l = 1. 

Proof: Let us denote by F the set of the elements f in G such that  there exist 

elements d and e in G with f E de, g(f) = g(d) + g(e), and 1 ~ age/. By way of 

contradiction, we assume that  ~ ~ F. We pick an element f in F which satisfies 

min g(F) = g(f). 

Since f E F, there exist elements d and e in G such that f E de, g(f) = 

e(d) + g(e), and 1 • adef. Since f E de and 1 # adef, we have 2 _< ade f.  In 
particular, 1 7~ d and 1 r e. 

Since 1 7~ e, there exist elements c in G and l in L such that  e Ec l ,  and 

g(e) = e(c) + 1; cf. Lemma 1.3. 

Since f e de, e(f)  = e(d) + g(e), e E cl, and g(e) = g(c) + 1, there exists an 

element b in dc such that f E bl, g(b) = t?(d) + e(c), and e(f) = g(b) + 1; cf. 

Lemma 1.4. 

We are assuming that  G is constrained over L. Thus, as f E bl and g(f) = 

g(b) + 1, {f} = bl. 

It is easy to see (and well-known) that  

E adcgagtf =- E adg/acl9; 
gEG gEG 

cf. [1], [3], or [6; Lemma 1.1.3(i)]. 

Since b Edc  and g(b) = g(d) + g(c), {b} = de. Thus, the left hand side of the 

above equation is equal to adcbabtI. 
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Since e E cl and s = e(c) + 1, {e} = cl. Thus, the right hand side of the 

above equation is equal to adefacle. 

The choice of f forces adcb • 1 and acre = 1. (Recall that  1 ~ d. Therefore, 

f(e) <_ s - 1.) Thus, abty = adey. Thus, as 2 _< adef, 2 < abtf . It follows that 

b E bl. Since {f} = bl, this yields f = b, contrary to ~(f) = ~(b) + 1. | 

LEMMA 2.3: Let f be an element in G, and let e be an element in G l ( f ) .  Let 

x be an dement  in X ,  y an dement  in xe, and z an dement  in y f .  Let X be a 

map from {x, y, z} to X .  

Then, ifxl{x,y} and X[{y,z} are faithful, X is faithful, too. 

Proof: Let us denote by g the uniquely determined element in G which satisfies 

z E xg. We have to prove that  zx  E xxg. 

Since z E y f  and y E xe, z E xe f .  Thus, as z E xg, g E ef .  Thus, as we are 

assuming that  e E G1 (f) ,  {g} = el .  

Assume that  X[{z,y} is faithful. Then, as y E xe, YX E xxe.  Assume that 

X[{y,z} is faithful. Then, as z E y f ,  z x  E Yx f .  From z x  E Y x f  and YX E xxe  

we obtain that  z:~ E x x e f  . Thus, as {g} = e f ,  z X E x)cg. | 

Let y and z be elements in X,  and let n be the smallest element in N with 

z E yL n. We shall denote by S (y , z )  the union of the sets yL i n zL  j which 

satisfy i + j = n: 

LEMMA 2.4: Let y and z be elements in X ,  let v be an element in S(y,  z), and 

let w be an dement  in S(v,  z). Let X be a map from {v, w, y, z} to X .  

Then, i f  X[{y,v,z } and Xl{y,w,z} are faithS1, X is faithful, too. 

Proof: Let us denote by d the uniquely determined element in G which satisfies 

v E yd, by b the one which satisfies w E vb. Then, we have w E ydb. Thus, 

there exists an element g in db such that  w E yg. 

Since w E yg, wx  E Yxg. (We are assuming that  X[{~,w,z} is faithful.) Thus, 

as g E db, w X E yxdb. Thus, there exists an element x in yxd  such that  w)~ E xb. 

Let us denote by c the uniquely determined element in G which satisfies 

z E wc. Then, as w E vb, z E vbc. Thus, there exists an element e in bc such 

that  z E v e .  F r o m e  E b c a n d w  E S(v , z )  we obtain that ~(e) = t ? ( b ) + t ( c ) .  

Thus, {e} = bc. 

Since z E wc, z x  E wxc. (Again, we use the hypothesis that  Xl{y,w,z} is 

faithful.) Thus, as wx  E xb, z x  E xbc. Thus, as {e} = bc, z x  E xe. 
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From z E v e  and v E yd we obtain that  z E y d e .  Thus, there exists an 

element f in de such that  z E y f .  From f E de and v E S(y ,  z) we obtain that  

g(f)  = g(d) + ~(e). Thus, by Lemina 2.2, ages = 1. 

Since z E y f ,  z x  E Y x f  . Since v C ydM ze*, v x  E yxdM zxe*. (This time, we 

use that  ~([{v,v,z) is assumed to be faithful.) On the other hand, we also have 

x E yxdMzxe* .  Thus, a s  a d e f  = 1, v x  = x. Thus, as w x  E xb, w x  E v)ib. | 

From now on, we assume G to be a Coxeter scheme over L. In particular, we 

may apply all results of the first two sections. 

3. Bas ic  fac ts  on  C o x e t e r  s c h e m e s  

In this section, we collect general results on Coxeter schemes. Our first result 

is a formal generalization of the exchange condition. 

LEMMA 3.1: Let h be an element in L, and let c, d be elements in G such that 

d E hc and f(d) = 1 + f(c). Let k be ml element in L, and let e, f be elements 

in G such that f E ek and ~(f)  = g(e) + 1. 

Then, i f  d E Gl(e) and c E G l ( f ) ,  we have de = c f  or d E Gx(f) .  

Proo~ Assume that  d E G1 (e). Then, there exists an element g in de such that  

e(g) = g(d) + g(e). Since d E hc and e(d) = 1 + e(c), there exists an element b 

in ce such that  g E hb, e(b) = g(c) + g(e), and g(g) = 1 + e(b); cf. Lemma 1.4. 

From b E ce and g(b) = ~(c) + ~(e) we obtain that  {b} -- ce. From g E hb and 

g(g) = 1 + ~(b) we obtain that  h E G~ (b). 

Similarly, using {b} = ce, we conclude from c E G1 (f)  that  b E G1 (k). Thus, 

as G is assumed to be a Coxeter scheme over L, we now have hb = bk or 

hb C Gl(k) .  

Since {d} = hc, {b} = ce, and {f} = ek, the first case yields de = c f .  

Since g E hb, the second case yields g E Gl(k) .  Thus, by definition, there 

exists an element a in gk such that  ~(a) = ~(g) + 1. Since a E gk and gk = 

hbk = hcek = dr, a E dr. Since ~(a) = g(g) + 1 and ~(g) + 1 = 1 + g(b) + 1 = 

1 + e(c) + e(e) + 1 = t(d) + e(f) ,  g(a) = g(d) + ~(f). Thus, d E G1 (f) .  | 

LEMMA 3.2: Let l be an dement  in L, let e be an e/ement in Gl(1), and let f 

stand for the element in el. Then G_l (e)  N G_l(1) C_ G _ I ( I ) .  

Proof: Let us denote by E the set of all elements g in G_l (e)  N G_l(1) with 

g ~ G - l ( f ) .  By way of contradiction, we assume that  0 # E.  We pick an 

element g in E such that  min e(E) = g(g). 
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Since g E G-l (e) ,  there exists an element c in G such that  g E ce and 

g(g) = ~(c)+g(e) .  Sincee E Gl(1) a n d g  E G- l (1 ) , e  ~ g .  Thus, a s g  E ce, 
1 r c. Thus, by Lemma 1.3, there exist elements h in L and b in G such that  

c E hb and g(e) = 1 + g(b). Thus, by Lemma 1.4, there exists an element g' in 

be such that  g E hg', ~(g') = t?(b) + ~(e), and t?(g) = 1 + ~(g'). 

Suppose that  g' E G_l(e) MG_I(1). Then, as g' • E, g' E G- l ( f ) .  On the 

other hand, as g E hg' and g(g) = 1 + e(g'), g E G-l(g'). Thus, by Lemma 

1.5(i), g E G-1 (f),  contrary to g E E. 

This contradiction forces g' ~ G-1 (e)M G-1 (I). On the other hand, as g' E be 
and g(g') = g(b) + g(e), g' E G-1 (e). Thus, g' ~t G-1 (I). Thus, by Lemma 1.6, 

g' E GI(I). Thus, by our latest hypothesis, hg' C_ g'l U Gl(l). Thus, as g E hg', 
g E g'l U Gl(1). Thus, as g E G- l ( / ) ,  g E g'l C_ bel. Thus, there exists an 

element f in el such that  g E bf. It follows that  

e(g) ___ <e(b)+e(e)+l =f(g ' )+ l  =2(g  ). 

This forces ~(g) = ~(b) + e(f).  Thus, as g E b f ,  g E G-1 (f), contrary to g E E. 

I 

For the remainder of this section, the letter N stands for a subset of L. 

LEMMA 3.3: For each dement  g in (N}, e(g) = gN(g). 

Proof: Assume the claim to be false. Among the elements in (N} which do 

not satisfy the equation in question we choose g in such a way that  ~N(g) is as 

small as possible. 

Since s ~ eN(g), 1 ~ g. Thus, by Lemma 1.3, there exist elements h in N 

and f in (N) such that  g E h f  and ~N(g) ---- 1 -b eg(f) .  

Since g(g) ~ ~N (g), g r N. Thus, as g E h f  and h E N, 1 r f .  Thus, by 

Lemma 1.3, there exist elements e in (N) and k in N such that  f E ek and 

~g(f) = ~Y(e) + 1. Now, by Lemma 1.4, there exists an element d in he such 

that  g E dk, ~N(d) = 1 + ~N(e), and gg(g) = gg(d) + 1. 
Since gg(g) = gN(d) + 1, the (minimal) choice of g yields g(d) = gg(d). 

Similarly, as gg(g) = 1 + gY(f)  and gg(f)  = gg(e) + 1, C(e) = gN(e). Thus, as 

d E he and eg(d) = 1 +gN(e), h E Gl(e). 
Similarly, one obtains that  e E G1 (k). Thus, as G is assumed to be a Coxeter 

scheme over L, we obtain that  he = ek or that  he C_ G1 (k). 
Since g E hek, the first of these two cases yields g E ekk = {e} U ek, contrary 

to ~N(g) = ~g(e )  + 2. Since d E he, the second case yields d E Gl(k). Thus, 

as g E dk, g(g) = t~(d) + 1. (Here we use the hypothesis that  G is constrained 
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over L.) Thus, as g(d) = gg(d) and eg(g) = ~g(d) + 1, g(g) = gY(g). This 

contradiction finishes the proof of the lemma. | 

If F stands for a subset of G, we shall write G- I (F )  in order to denote the 

intersection of the sets G - l ( f )  with f �9 F. 

LEMMA 3.4: We have G_:((N)) = G_I(N).  

Proof: Let us assume that G_I((N)) ~ G_:(N).  Then, as G-I((N))  C_ 

G_:(N),  G_:(N) g G_I((N)). Thus, there exists an element g in G_: (N)  

such that g it G_I((N)).  

Since g it G_I((N)),  there exists an element f in (N) such that g it G - l ( f ) .  

Among the elements f in (N) satisfying g it G - i ( f )  we pick f such that g(f) 

is as small as possible. 

Since g r G_: (f), 1 # f .  Thus, Lemma 1.2 gives us elements e in (N) and k 

in N such that f �9 ek and g(f) = g(e) + 1. Now, the minimal choice of f forces 

g �9 G_i(e). Thus, as g �9 G_I(N) C_ G_:(/), g �9 G - l ( / ) ;  cf. Lemma 3.2. This 

contradiction finishes our proof. | 

LEMMA 3.5: We have G:((N)) = G:(N).  

Proof: Let us assume that GI((N)) r GI(N). Then, as G:((N)) C GI(N), 

GI(N) ~ G:((N)). Among the elements in G I ( N ) \  G:((N)) we choose d such 

that g(d) is as small as possible. 

Since 1 E GI((N>) and d it GI((N)), 1 ~ d. Thus, by Lemma 1.3, there exist 
elements h in L and c in G such d C hc and g(d) = 1 + g(c). 

Since d it G:((N)), there exists an element f in (N) such that d it G:(f ) .  

Among the elements f in (N) satisfying d it G1 (f) we choose f in such a way 

that g(f) is minimal. Since d it Gl( f ) ,  1 ~ f .  Thus, by Lemma 1.3 and 
Lemma 3.3, there exist elements e in (N / and k in N such that f E ek and 

e(f)  : e(e) + 1. 

Since d E hc and g(d) = l+g(c), d E G-x(C). Thus, as d E GI(N), c E GI(N); 

cf. Lemma 1.5(ii). Thus, as e(d) = 1 + e(c), the (minimal) choice of d yields 

c �9 G1 ((N)). 
Since e(f) = g(e) + 1 and e �9 (N), the (minimal) choice of f yields d �9 G1 (e). 

Since c �9 GI((N)) and f �9 (g) ,  c �9 Gx(f). Thus, by Lemma 3.1, de = cf  or 

d �9 G:(f) .  Thus, by the choice of f ,  de = cf. Thus, as e, f �9 (N), d �9 c(N). 
Thus, there exists an element g in (N) such that d �9 cg. 

Since c �9 GI((N)) and g �9 (N), c �9 GI(9). Thus, as d �9 c9, g(d) = ~(c)+g(g). 
Since e(d) = l+g(e),  this means that e(g) = 1. Thus, by Lemma 3.3, g �9 N. On 
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the other hand, as d E c9 and e(d) = f(c) + s d E G-I(g).  Thus, d • GI(N), 

contrary to our choice of d. I 

LEMMA 3.6: We have {L \ N) _C GI((N)). 

Proo(: Let l be an element in L \ N. Then as G is assumed to be a Coxeter 

scheme over L, l E GI(N). Thus, by Lemma 3.5, l E GI({N)). Thus, by Lemma 

1.5(iii), {N) C_ Gl(l). 

Since l has been chosen arbitrarily in L \ N, we have shown that (N) C_ 

G1 (L \ N). Thus, by aemma 3.5, (N) C_ Ga ((L \ N)). Thus, by Lemma 1.5(iii), 

{L \ N) C_ GI({N)). I 

LEMMA 3.7: For each subset M of L, ((M) M G1 (N))(M M N) = {M). 

Proos From Lemma 3.6 we know that {M) C_ GI(N \ M). Thus, 

(M) ~ G I(M 0 N) = {M) M 61(N). 

On the other hand, Lemma 1.7 says that (M) M GI(M M N){M M N) = (M), 
and according to Lemma 1.1, the left hand side of this equation is equal to 

((M) M G I ( M M N ) ) { M N N ) .  I 

LEMMA 3.8: Let e and f be elements in G, and let l be an element in L such 

that l E Gl(e) and I E Gl(f) .  Then, i f le  C l f (N) ,  e E f (N) .  

Proof." Let us assume, by way of contradiction, that le C_ I f{N) and e ~ f {N) .  

Since le C l f{N),  we have e E f {N)  or e E l f (N) .  Thus, as e r f iN ) ,  

e e I f{N).  
By Lemma 1.7, there exists an element d in GI(N) such that f E d(N). By 

Lemma 3.5, f* E G_l(d*). Thus, as 1 6 Gl( f) ,  l E Gl(d); cf. Lemma 1.5(iv). 

Thus, as G is assumed to be a Coxeter scheme over L, we have Id C_ dN or 

Id C_ GI(N). Since e E l f (N) ,  f ( N )  = d{N), and e ~ f (N) ,  we cannot have 

Id C_ dN. Thus, Id C_ G1 (N). 

Similarly, we obtain an element c in GI(N) such that e E c{N), I E G1 (c), 
and lc C_ Gt(N).  Using Lemma 3.5 once again we now obtain that lc = Id. 
(Note that Ic(N) = ld{N).) Thus, by Lemma 2.1, c = d. Thus, as e E c(N) and 

f E d(N), e E f (N) ,  contradiction. I 



Vol, 151, 2006 THE EXCHANGE CONDITION FOR ASSOCIATION SCHEMES 369 

LEMMA 3.9: Let 1 be an element in L, and let e be an element in GI(N) .  

Assume there exists an element g in e(N) such that l E G1 (g) \ (N) g* �9 Then 

le C GI(N). 

Proof: From g E e(N) we obtain that  (N)g* = (N)e*. Thus, by Lemma 1.2(i), 

(N) 9. = (N} e* . Thus, as we are assuming tha t  I ~ (N} g* , 1 q~ (N) e* . Tha t  

means that  e*l ~: (N)e*, so that  we have le ~ e(N). 

On the other hand, we are assuming that  l E Gl(g) .  Thus, by Lemma  1.5(ii), 

(iii), l E G1 (e). Thus, as G is assumed to be a Coxeter scheme over L, we have 

le C G1 (N). I 

LEMMA 3.10: For any two elements y and z in X ,  [yGl(N) A z(N)[ = 1. 

Proof: From Lemma 1.7 we know that  yGI(N)  A z(N)  is not empty. In order 

to show that  yGI(N)  A z (N)  has exactly one element, we now pick elements v 

and w in yGI(N)  A z (N  I, and we shall see tha t  v = w. 

Since v E yGI(N),  there exists an element e in G I ( N )  such tha t  v E ye. 

Since v, w E z(N),  w E v(N). Thus, there exists an element c in (N) such tha t  

w E vc. Together, this yields w E yec. Thus, there exists an element f in ec 

such that  w E yf .  Since e E G I ( N ) ,  c E ( g ) ,  and f E ec, ~(f) = ~(e) + ~(c); 

cf. Lemma 3.5. 

From w E yG1 (N) we similarly obtain tha t  ~(e) = e(f)+~(c*) .  Thus, 0 = ~(c). 

It  follows that  1 = c. Thus, as w C vc, v = w. I 

If g stands for an element in G, we shall write (g / ins tead  of ({g}). 

LEMMA 3.11: Let l be an element in L, let x, y, z be elements in X such that 

x(l> = y(l) = z(1) and y # z. Then, for each subset M o f L ,  y(M)  Az(N> C_ 

x((M) U (N)). 

Proof: Let w be an element in y ( M ) A z ( N ) .  Since w E z(N) ,  z E w(N).  Thus, 

as w E y(M I, z E y (M)(N) .  Thus, as z E yl, l E (M)(N)  C_ ( M U N ) .  It  follows 

that  l E M U N; cf. Lemma 3.3. 

Since w E y(M) and y E x(1), w E x(1)(M). Similarly, w E x(1)(g).  Thus, 

as l E M U N,  we must have w E x(M) or w E x(N) .  Thus, w E x((M) U (N)). 

I 
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4. F a i t h fu l  m a p s  a n d  C o x e t e r  s c h e m e s  

In this section, the letter N stands for a subset of L. 

LEMMA 4.1: Let y be an element in X,  let z be an element in yGI(N), and let 

X be a map from {y} U z(N) to X .  

Then, if Xi{y,z} and XIz(N> are faithful, X is faithful, too. 

Proof." Let x be an element in z(N). We shall be done if we succeed in showing 

that  Xl{y,x} is faithful. 

Since x E z(N), there exists an element f in (N) such that  x E z f .  Since we 

are assuming that  z E yGI(N), we find an element e in GI(N) such that  z Eye .  

Since e E GI(N) ,  e E GI((N)) ;  cf. Lemma 3.5. Thus, as f E (g ) ,  e E G l ( f ) .  

Thus, as X[{~,z} and X[{z,z) are faithful, X[{~,x} is faithful; cf. Lemma 2.3. I 

LEMMA 4.2: Let x be an element in X,  let M be a subset of L, and let X be a 

map from x((M) U (N}) to X .  

Then, if xlx(M) and XIx(N) are faithful, X is faithful, too. 

Proof." Let y be an element in x(M). Then, x E y(M). Thus, by Lemma 3.7, 

x E y((M) M Gi(N))(N).  Thus, there exists an element z in y((M) M Gi (N) )  

such that  x E z(N). 

Since z E y(M), xi{y,z} is faithful. Since x E z(N), XIz(N) is faithful. Thus, 

as z E yGI(N), Xl{y}Ux(N} mus t  be faithful; cf. Lemma 4.1. I 

LEMMA 4.3: Let g be an element in G, and let l be an element in L with 

l E Gl(g) \ ( N }  g*. Let x be an element in X ,  y an element in xl, andz  an 

dement in yg. Finally, let X be a map from {x, y} U z{N) to X.  

Then, ifxl{x,v} and Xl{y)uz(N) are faithful, X is faithful, too. 

Proof By Lemma 1.7, there exists an element e in GI(N)  such that  g E e(N). 

Thus, as we are assuming that  l ~ Gl(g) \ ( N y ,  le C_ GI(N);  cf. Lemma 3.9. 

Since z E yg and g E e(N), z E ye(N). Thus, there exists an element w in ye 

such that  z E w(N I. Since w E y e  and y E xl, w E xle. Thus, as le C_ GI(N) ,  

W E xG1 ( g ) .  

By hypothesis, xl{x,y} and )/]{y,w} are faithful. Moreover, as l E Gl(g),  

l E Gl(e);  cf. Lemma 1.5(iv). Thus, as y E xl and w E y e ,  xi{x,,v} is faithful, 

too; cf. Lemma 2.3. On the other hand, as z E w(N), XIw(g) is faithful. Thus, 

as w E xG1 (N) and z E w(N), g]{x}Uz(N) is faithful, too; cf. Lemma 4.1. I 
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LEMMA 4.4: Let M be a subset of L, and let g be an element in G1 (M) such 

that (M) C_ (N)g. Let y be an element in X ,  let z be an element in yg(M}, and 

let z' be an element in z(M}. 

Then, for each faithful map ~ from y(N) U {z} to X, there exists at most 

one faithful map )~' from y(N) U {z'} to X,  sudl t ha t  Xt[y(N) : XIy(N) and 

z'x' E zx(M).  

Proof: We are assuming that  z E yg(M}. Thus, z r E yg(M}. On the other 

hand, we are assulning that {M) C_ (N) 9, and that  means that  g(M) C_ {N}g. 

Thus, z' E y(N)g, so that  we find an element y' in y(N} with z' E y'g. 

Let us now fix a faithful map X' from y(N} U {z'} to X which satisfies 

Xqy(N) = .~]y(g) and z'x' E zx(M).  

Since y' E y(N),  X ~ is defined on y'. Moreover, we have z ~ E y'g. Thus, as X t 

is assumed to be faithful, we have z';~' E y'xtg. On the other hand, as we are 

assuming that )~[y(~r = X[y(N), we have Y'X' = Y'X. Thus, z'x' E Y'xg. Thus, 

as g E G1 (M), z')t' E y')tGI (M). 

Thus, as z~x ~ E z~(M), the claim follows from Lemma 3.10. | 

5. Pr oo f  of T h e o r e m  A 

It is the goal of this section to prove Theorem A. The main idea is the use of 

Corollary 5.3 in the proof of Lemma 5.5. 

In this section, the letter N" stands for a non-empty set of subsets of L. 

LEMMA 5.1: We have (NNeA[ N) = NNEAz{N). 

Proof." Let us denote by D the intersection of the elements in AY and by H the 

intersection Of the sets (N} where N E N'. We have to show that  (D} = H. 

By way of contradiction, we assume that  (D) ~ H. Then, as {D / C_ H, 

H ~ (D). We pick an element g in H\(D)  which satisfies ming(H\ (D})  = ~(g). 

Since 1 E (D) and g ~t (D), 1 ~- g. Thus, by Lemma 1.3, there exist elements 

f in G and I in L such that  g E f l  and e(g) = / ~ ( f ) + l .  It follows that  g E G-l(1). 

Thus, a.s g E H, l E D; cf. Lemma 3.6. Thus, as g E f l  and g E H, f E H. 

Thus, as/~(g) = g(f) + 1 and min~(H \ (D)) = g(g), f E (D). Thus, as g E f l  

and I E D, g E (D), contradiction. | 

LEMMA 5.2: For eadl element g in G, we have g(NNEN" N) = NNE.M g(N). 
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Proof: Let us denote by E the set of all elements 9 in G which do not satisfy 

the equation in question. By way of contradiction, we assume that  O ~ E. We 

pick an element g in E which satisfies min g(E) = g(g). 

By Lemma 5.1, 1 ~ E. Thus, as g E E, 1 ~ g. Thus, by Lemma 1.3, there 

exist elements l in L and f in G such that  g E I f  and g(g) = 1 + g(f). 

Let us denote by D the intersection of the elements in Af. By F we shall 

denote the intersection of 

g(D) # F. Thus, as g(D> 
such that  d ~ g(D). 

the sets giN> where N E Af. Then, as g E E, 

C_ F, F ~ g(D). Thus, we find an element d in F 

Let us first assume that  d* E G_l(l). Then, there exists an element c in G 

such that  d E lc and bid ) = 1 + g(c). Thus, l E GI (c). Moreover, since g E I f  
and g(g) = 1+ gif) ,  l E Gl ( f ) .  On the other hand, for each element N in Af, we 

have d E g(N). Thus, for each element N in Af, we have c E f iN);  cf. Lemma 

3.8. Thus, as e(g) = 1 + g(f) and ming(E) = g(g), e E l iD).  It follows that  

d E Ic C l f iD  ) = g(D), contrary to the choice of d. 

Let us now assume that  d* ~ G-1 (1). Then, by Lemma 1.6, d* E G1 (1). Thus, 

by Lemma 1.5(iii), 1 E Gl(d). Thus, there exists an element e in G such that  

{e} = ld. Since d E F,  we have that,  for each element N i n A f ,  d E g<N). 
Thus, for each element N in Af, f E Ig C IdiN ) = eiN), and this is equivalent 

to e E f iN) .  Thus, as g(g) = 1 + g(f) and man g(E) = ~(g), e E f<D). Thus, 

d E le C_ l f iD  > = g<D>, contrary to the choice of d. I 

COROLLARY 5.3: For each element g in G, we have <NN~]r N) g = ~NEAf<N) g" 

Proof: Let us denote by D the intersection of the elements in Af. Then, for 

each element N in .Af, (D)g C_ (N)g. 

Conversely, let e be an element in G such that,  for each element N in A/', 

e E IN) g. Then, for each element N in Af, ge C_ (N}g. Thus, by Lemma 5.2, 

ge C (D)g, and this means that  e E <D}g. I 

For the remainder of this section, we denote by V the union of the sets iN) 

with N E H .  We also fix two elements y and z in X. 

LEMMA 5.4: Let x be an element in S(y, z). Then, each faithful map from 
{y} U zV to X extends faithfully to {x, y} U zV. 

Proof'. Let d (respectively e) stand for the uniquely determined element in G 

which satisfies x E yd (respectively z E xe). Then, we have z Eyde .  Thus, 

there exists an element f in de such that  z E yf .  
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Let X be a faithful map from {y}UzV to X. Then, as z E y f ,  z x  E Y)if .  

Thus, as f E de, z x  E yxde. Therefore, there exists an element v in y)id such 

that z)~ Eve .  We set xx := v. Then, xi{y,x,z} is faithful. 

Now we pick an element N in A/'. Then, by Lemma 1.7, z E x G I ( N ) ( N } .  

Thus, there exists an element w in x G I ( N )  such that z E w(N) .  Thus, by 

Lemma 3.5, w E S (x , z ) .  On the other hand, as w E z(N} C zV ,  Xi{y,w,z} is 

faithful. Thus, as x E S (y , z )  and )d{~,,,~} is faithful, xi{~,w) is faithful; cf. 

Lemma 2.4. Thus, as w E x G I ( N )  and z E w(N},  ;vi{,}u~(g) is faithful; cf. 

Lemma 4.1. 

Now the claim follows from the fact that N has been chosen arbitrarily in A/'. 
| 

LEMMA 5.5: Let x be an element in X such that y E S (x , z ) .  Then, i f  y E xL,  

each faithful map/ tom {y} tO z V  to X extends faithfully to {x, y} tO zV.  

Proo~ Let g stand for the uniquely determined element in G which satisfies 

z E yg, and let l be the uniquely determined element in L which satisfies y E xl. 

Then, as y E S(x,  z), l E GI (g). 

Let ~ be a faithful map from {y} to z V  to X, and let us denote by 54 the set 

of all elements N of Af which satisfy I E (N) g" . 

Assume first that  q} = 54. In this case, we pick an arbitrary element in yxl ,  

and we denote this element by xx. By Lemma 4.3, the extension of X defined 

in this way, must be faithful. 

Let us now assume that  q} ~ .a/l, and let us denote by C the intersection of 

the elements in ~'l. Then, by Corollary 5.3, l E (C} 9", and that  means that 

lg C g(C). 

On the other hand, we have z E yg and y E xl, whence z E xlg. Thus, 

as lg C_ g(C}, z E xg(C). Thus, there exists an element w in xg such that  

z E w(C}. From x E yl, w E xg, and l E G1 (g) we obtain that  x E S(y,  w). 

Let us denote by U the union of the sets (M) with M E 54. Then, as 

w E z(C), wU = zU. Thus, as x E S (y ,w) ,  )d{~}u,u extends faithfully to 

{x, y}UzU; cf. Lemma 5.4. Thus, by Lemma 4.3, x is faithful also on {x, y}UzV.  

| 

LEMMA 5.6: Let x be an element in X .  Then, each faithful map from y V U  {z} 

to X extends faithfully to yV  tO {x, z}. 

Proof: By induction, we may assume that  x E zL. Then the claim follows 

from Lemma 5.4 and Lemma 5.5. | 
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Let us denote by g the uniquely determined element in G which satisfies 

z E y g .  

For each element N in Af, let N t be a subset of L such that,  for e E 

g(N')  M GI(N') ,  (N') C_ (N) e. We denote by V' the union of the sets (N') 

with N E A/'. 

LEMMA 5.7: Each faithful map from yV U {z} to X extends faithfully to 

yV  U z V  r. 

Proof: Let X be a faithful map from yV  U {z} to X. Then, by Lemma 5.6, X 

extends to yV U z V  ~ in such a way that,  for each element x in zV  ~, :~]yvu{x,z} 

is faithful. 

Let us now fix an element N in A/', and let us pick two elements v and w 

in z(N' ) .  By Lemma 5.6, xiy(N)U{v} extends faithfully to y(N)  U {v,w}. By 

Lemma 4.4, this extension coincides with xiy(N)u{v,w). Thus, Xl{v,~} is faithful. 

Since v and w have been chosen arbitrarily in z(N' ) ,  we have shown that  

xiz(g,) is faithful. Thus, the claim follows from Lemma 4.2. I 

THEOREM A: Each faithful map from yV to X extends faithfillly to yV  U zV  ~. 

Proof." Let X be a faithful map from yV  to X. Then, by Lemma 5.6, X extends 

faithfully to yV U {z}. Thus, the claim follows from Lemma 5.7. I 

LEMMA 5.8: Let z ~ be an element in yg M zV' .  Then, for each faithful map X 

from yV  U zV  ~ to X ,  there exists a faithful map X ~ from yV U z~V ~ to X which 

coincides with X on yV  and on z V  ~ M z~V ~. 

Proof: We are assuming that  z I E yg. Thus, there exists a faithful map X r 

from yV  U zIV ~ to X which coincides with X on yV and on z~; cf. Lemma 5.7. 

We shall show that  X and )C r coincide on zV  ~ M z~V ~. In order to do so, we pick 

an element x in zV  ~ M z~V t. Since x E z~V t, there exists an element N in Af 

such that  x E z~(N'). 

Since (N / C_ V, the (faithful) maps xiy(g)u{x) and )~'ly(g)u{~} coincide on 

y(N) .  Moreover, as x E z ' (N') ,  xx '  E z 'x ' (N ' )  = z';~(N'). Finally, as x E 

z ' (N' ) ,  x x  E z ' x (N ' ) .  Thus, by Lemma 4.4, xx  = xx' .  I 
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6. P r o o f  of Theo rem B 

It is the goal of this section to prove Theorem B. The proofs of the first two 

results are similar to the corresponding ones for Coxeter groups. We add them 

here just for the sake of completeness. Our general approach to Theorem B is 

inspired by the arguments of Tits' well-known reduction theorems for buildings 

of spherical type. 

In this section, the letter N stands for a subset of L such that (N) is finite. 

LEMMA 6.1: Let g be an element in (N) satisfying ~(g) = maxg((N)). Then 
�9 G_I((N)) .  

Proof." From g E (N) and g(g) = maxg((N)) we obtain that, for each element 

1 in N, g r G1 (1). Thus, by Lemma 1.6, g E G-1 (N). Thus, the claim follows 

from Lemma 3.4. I 

LEMMA 6.2: The set (N) contains a uniquely determined dement g satisfying 
e(g) = maxe( (N)) .  

Proof Let e and f be elements in (N) satisfying e(e) = max~((N)) = ~(/). 

We shall show that e = f .  

Since f E (N) and ~(f) = max~((N)), f E G_I((N)); cf. Lemma 6.1. Thus, 

as e E (N), f E G_l(e). Thus, by definition, there exists an element d in G 

such that f E de and ~(f) = g(d) + ~(e). 

Similarly, we find an element c in G such that e E cf  and ~(e) = g(c) + ~(f). 

It follows that ~(c) = 0. Thus, 1 = c, whence e = f .  I 

Lemma 6.2 says that the set (N) contains a uniquely determined element g 

satisfying g(g) = max~((N)). We shall denote this element by iN. 

Since (jN)* E (N) and ~((jN)*) = ~(jg), we have (jN)* = jN. In the 

following, we shall use this equation without further reference. 

Let g be an element in (N). Then, as jN E (N) and ~(jN) = max~((N)), 

j g  E G-l(g); cf. Lemma 6.1. Thus, by definition, G contains an element f 

with jN E fg  and ~(jN) = e(f) + ~(g). Moreover, by Lemma 2.1, G contains at 

most one such element. We denote this element by g(N). Note that g(~) E (N). 

Thus, g(N)(g) is defined. We write g[N] instead of g(n)(N). 

It is clear that, for each element g in (N), ~(g[N]) = ~(g). In particular, for 

each element l in N, we have l IN] E N; cf. Lemma 3.3. 

For each subset M of N, we define M IN] to be the set of all elements l IN] 

with l E M. 
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LEMMA 6.3: For each subset M of N, the following holds. 
(i) We have (jM) (N) E jN(M). 

(ii) We have (jM) (N) E GI(M). 
(iii) We have (M} C_ (M[N])((jM)(N)). 

Proof." (i) By definition, we have jN E (jM)(N)jM. Thus, as jM E (M), 
jg  E (jM)(N)(M), SO that  (jM) (y) E jN(M). 

(ii) In order to show that (jM) (N) E GI(M) we pick an element l in M, and 

we shall show that  (jM) (N) E Gl(1). Since 1 E M, jM E G-l( / ) ;  cf. Lemma 

6.1. Thus, by Lemma 1.5(iv), GI(jM) C_ Gl(1). Thus, as (jM) (N) E GI(jM), 
(jM) (N) E GI(I). 

(iii) From Lemma 1.2(ii) we know that  it is enough to show that,  for each 

element 1 in M, (jM)(N)I C_ (M[N])(jM)(N). 

In order to do so we pick an element in I in M. Then, by (ii), (jM) (N) E Gl(1). 
Thus, there exists an element e in (jM)(N)l such that  g(e) = g((jM) (N)) + 1. 

Assume that  M IN] _C Gl(e). Then, by Lemma 3.5, jMINJ E Gl(e). Thus, 

there exists an element f in jMINIe such that  e(f) = g(jMtNl) q- g(e). On the 

other hand, as f E (N), ~(f) _< ~(jN), contradiction. 

Thus, as G is assumed to be a Coxeter scheme over L, there exists an element 
k in M IN] such that  (jM)(N)l -~ k(jM) (N) C_ (M[N])(jM)(N). I 

For the remainder of this section, we shall write j instead of jg .  

LEMMA 6.4: Let (y, z) be an element in j,  and let 1 be an element in N. Then 
each faithful map from y(l IN]) U z(1) to X is uniquely determined by its action 
on y(iINl) U {z}.  

Proof." Let X be a faithful map from y(l[N])oz(1) to X, and let x be an element 

in z(l>. By Lemma 6.3(ii), 1 (N) E Gl(1), and, by Lemma 6.3(iii), (l) C_ (l[g]> I(N). 

Thus, the claim follows from Lemma 4.4 (applied to {l} and {l IN]} instead of 

M and N). I 

LEMMA 6.5: Let (y,z) be an element in j, and let M be a subset of N with 
0 = T(M).  Then each faithful map from y(M IN]) U z(M) to X is uniquely 
determined by its action on yM IN] U {z}. 

Proof." Let X be a faithful map from y(M[N]I U z(M) to X. From Lemma 6.4 

we obtain that  X is uniquely determined on zM. 
Let us now prove that  X is uniquely determined on zM ~. In order to show 

this we pick an element w in z M  2. Since w E z M  2, there exists an element v 
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in zM such that  w E vM. Since v E zM, there exists an element h in M such 

that  v E zh. Since w E vM, there exists an element k in M such that  w E vk. 
We are assuming that  T(M) is empty. Thus, zj M vj M y(h[N]l is not empty. Let 

x be an element in zj • vj M y(h[N]). 
By hypothesis, X is uniquely defined on yh IN]. In particular, X is uniquely 

defined on x. Thus, as x E zj, ~ is uniquely defined on x(k[g]l; cf. Lemma 6.4. 

Thus, as v E xj, X is uniquely defined on v(kl; cf. Lemma 6.4 once again. 

Induction now finishes our proof of the lemma. I 

For the remainder of this section, we fix an element n in { 1 , . . . ,  [NI}. The 

letter M will stand for the set of all subsets of N of order less or equal to n. 

By V we denote the union of the sets {M) with M E A//. 

For each pair (y, z) in j ,  we define Xvz to be the set of all faithful maps from 

yV U zV to X. 

From now on, we assume T(N) to be empty. As a consequence of Lemma 6.5 

we obtain the following. 

COROLLARY 6.6: Let (y,z) be an dement  in j .  Then each map in Xyz is 

uniquely determined by its action on yN U {z}. 

Let M be an element in f14, let (v,w) and (y,z) be elements in j such that  

y E v(M[N]I and z E wIM I. 
Two maps X in X,w and ~ in Xyz will be called M-compatible if, for each 

element x in wj M zj M v(M[N]}, there exist maps r 1 in Xx~ and ~ in X~z such 

that  X and ~ coincide on vV M xV and on wV, rl and ~ coincide on xV and on 

wV M zV, and ~ and ~ coincide on xV M yV and on zV. 
Note that ,  for any two elements y and z in X,  ~ ~ yj M zj. (This follows by 

induction.) Thus, if (v,w) and (y,z) are elements in j ,  r an element in Xvw, 

and r an element in Xvz which is M-compatible with r z r  E we(M) and 

y~ e vr 
We define X to be the union of the sets Xyz with (y, z) E j .  

For the remainder of this section, we assume that  2 <_ n. 

LEMMA 6.7: M-compatibility is an equivalence relation on X. 

Proof: By Lemma 5.8, M-compatibility is reflexive. Tha t  M-compatibili ty is 

symmetric follows immediately from the definition of M-compatibility. Let us 

prove transitivity. 

Let (u',u), (v',v), (w',w) be elements in j such that  v, w E u(M) and v', 

w t E u'(M[g]). Let X~ be an element in Xu, u, let Xw be an element in X~,~, 
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and let Xv be an element in Xv, v which is M-compat ib le  with both, ;~u and Xw. 

We have to show tha t  ~ and Xw are M-compatible.  By induction, we may 

assume that  w E vM. Thus, there exists an element l in M such that  w E vl. 

In order to show that  ~u and ~w are M-compatible,  we pick an element t in 

uj n wj n u'(M[N]). Then, as we are assuming that  T(N) is empty, there exist 

elements r in uj n vj n t(l IN]) and s in vj n w j n  t(l[N]); recall that  w E vl. 

Since )(~ and Xv are assumed to be compatible, there exist maps p from 

rV U uV to X and a from rV U vV to X such that  ~u and p coincide on 

uIV n rV and on uV, p and a coincide on rV and on uV n vV, and a and Xv 

coincide on rV n v~V and on vV. 

Similarly, as ~v and ~ are assumed to be compatible, there exist maps ( 

from sV U vV to X and ~/from sV U wV to X such that  ~v and ( coincide on 

v~V n sV and on vV, ( and ~ coincide on sV and on vV n wV, and ~ and ~ 

coincide on sV n w~V and on wV. 

By Lemma 5.8, there exists a faithful map r from tV U uV to X which 

coincides with )6~ on uIV n tV and on uV. Similarly, we find a faithful map r 

from tV U wV to X which coincides with r on tV and on uV N wV. Finally, 

referring to Lemma 5.8 a third time, we obtain a faithful map ~ from sV U wV 

to X which coincides with r on tV n sV and on wV. 

We claim that  ~ = ~7, and in order to see this we pick an element x in sN. 

Then, as we are assuming that  2 < n, 

x f l  = x r  = x r  = x p  = x a  = x (  = zrl .  

Since x has been chosen arbitrari ly in sN, we have that  ~Isg ~-- ~]lsg" Thus, as 

w ~  = w e  = w e  = w p  = w a  = w ~  = w ~ ,  

= r]; cf. Corollary 6.6. 

The maps r and ~ coincide on w' and on wV. The same is true for r] and )Cw. 

Thus, r and X~ coincide on w ~ and on wV. Thus, they coincide on tV n w~V 

and on wV. I 

Let (y, z) be an element in j ,  and let M be an element in 3//. From Lemma 6.7 

we obtain (in particular) tha t  each M-equivalence class intersects Xyz in at most 

one element. The following lemma shows that,  if ~ r X, each M-equivalence 

class intersects Xyz in at least one element. 

LEMMA 6.8: Let (y, z) and (y', z') be dements in j ,  and let M be an element 

in Ad such that y' E y(M IN]) and z' E z(M). Then, for each element X in Xyz, 

there exists an element in Xy, z, which is M-compatible with X. 
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Proof: By Lemma 6.7, we may assume that  z' E zM. In this case, there exists 

an element l in M such that  z' E zl. 

Since z' E zl, we may assume that y' E yl IN]. Since we are assuming that  

T(N)  is empty, there exists an element x in zj  n z ' j  D y<l[N]>. 

By Lemma 5.8, there exists a faithful map r from xV  U z V  to X which 

coincides with X on yV N xV  and on vV. Similarly, we find a faithful map r 

from xV  U z~V to X which coincides with r on xV  and on z V  D z~V. Finally, 

referring to Lemma 5.8 a third time, we obtain a faithful map Xz' fl'om y ' V Uz ' V  

to X which coincides with r on xV  n y 'V and on z'V. 

The maps X and r coincide on yV n xV,  r and r coincide on xV,  and r and 

Xz, coincide on xV  n y~V. On the other hand, we know from Lemma 3.11 that  

yV N ytV C xV.  Thus, X and Xz' coincide on yV M y~V. 

The maps X and r coincide on zV,  r and r coincide on zV  D z'V, and r and 

Xz' coincide on ztV. Thus, X and Xz' coincide on zV  N z~V. 

In order to show that  X and Xz' are M-compatible, we pick an element t in 

y'IM[N]> n zj N z'j. By Lemma 5.8, there exists a faithful map r from tV U z V  

to X such that X and r coincide on yV n tV and on zV.  Similarly, there exists 

a faithful map ~ from tV U z 'V  to X such that  r and r coincide on tV and on 

zV n ztV. 

We claim that  r and X~ coincide on z~N. In order to see this we pick an 

element x in z'N. Then, as z ~ E zM,  xr  = xr = xx  = X)Cz,. Thus, as 

y~r = yrr = Y~X = y~xw, we conclude that  ~ and X~' coincide on tV N ytV and 

on ztV. | 

We call N-compatibility the smallest equivalence relation on X which contains 

M-compatibility for each M in ~4. 

Let (y, z) and (y', z') be elements in j ,  let r be an element in Xyz, and let 

r be an element in Xy, z,. Then, if r and ~ are N-compatible, z ~ E z(N)  (and 

y' E y<N>). 

LEMMA 6.9: Let (y, z) be an element in j.  Then, for each element X in X there 

exists at most one element in Xyz which is N-compatible with X. 

Proof: Let us denote by F the set of all elements g in (N) such that  zg contains 

an element contradicting our claim. By way of contradiction, we assume that  

0 ~ F.  We pick an element f in F such that  min ~(F) = f ( f ) .  

Since S E F,  1 ~ f .  Thus, by Lemma 1.3, there exist elements e in (N) and 

h in N such that  f E eh and f ( f )  = f(e) + 1. 
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Since f E F,  there exists an element x in z f  such that Xz contains at least 

two (different) elements Xx and X~ which are N-compatible with ~. 

From x E z f and f E eh we obtain that x E zeh. Thus, there exists an 

element u in ze such that x E uh. 

By Lemma 6.8, there exists an element X,, in Xu which is N-compatible with 

Xx. Similarly, we find an element )~ in X~, which is N-compatible with X~. 

Both, ~ ,  and X~, are N-compatible with X. Thus, as rain g(F) = g(f),  X,, = );~. 

Thus, by Lemma 6.7, Xx = .~ .  | 

TItEOREM B: Let x be an element in X. Then each faithfifl map from x V  to 

X extends fMthfully to x (N) .  

Proof: Let )/ be a faithflfl map from x V  to X, and let x' be an element in 

x' j .  Then, by Theorem A, X extends faithfidly to a map X~ from x~V U x V  to 

X. Thus, by Lemma 6.9, there exists, for each element w in x (N)  a uniquely 

determined element Xw in X w which is N-compatible with Xx. 

For each element w in x (N) ,  we set wx := w:~w. Then we obtain that,  for 

any two elements u and v in x (N)  satisfying v E uN,  vk ~ E u~N.  Thus, ;k' is a 

faithful map from x (N)  to X. 
Let t be an element in xV.  Then, by definition, there exists an element M in 

M such that  t E x (M) .  Thus, by induction, XtIx(M) = klx(M)" This shows that  
;( extends ~(~. 
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